776
J. Bao et al.
9. BoydVL, Bozzini M, ZonG, Noble RL, Mattaliano RJ. Sequencing
of peptides and proteins from the carboxy terminus. Anal.
Biochem. 1992; 206: 344.
10. Patterson DH, Tarr GE, Regnier FE, Martin SA. C-terminal
ladder sequencing via matrix-assisted laser-desorption mass-
spectrometry coupled with carboxypeptidase-y time-dependent
and concentration-dependent digestions. Anal. Chem. 1995; 67:
3971.
11. Thiede B, Wittmannliebold B, Bienert M, Krause E. Maldi-ms
for C-terminal sequence determination of peptides and proteins
degraded by carboxypeptidase-y and carboxypeptidase-P. FEBS
Lett. 1995; 357: 65.
Sodiated Gas-Phase Peptide Ions Adjacent to Aspartic Acid
Residues. J. Am. Chem. Soc. 1998; 120: 3188.
25. Li HB, Siu KWM, Guevremont R, LeBlanc JCY. Complexes of
silver(I) with peptides and proteins as produced in electrospray
mass spectrometry. J. Am. Soc. Mass Spectrom. 1997; 8: 781.
26. Gonzalez J, Besada V, Garay H, Reyes O, Padron G, Tambara Y,
Takao T, Shimonishi Y. Effect of the position of a basic amino
acid on C-terminal rearrangement of protonated peptides upon
collision-induced dissociation. J. Mass Spectrom. 1996; 31: 150.
27. Nemirovskiy OV, Gross ML. Complexes of iron(II) with cysteine-
containing peptides in the gas phase. J. Am. Soc. Mass Spectrom.
1996; 7: 977.
12. Lee SW, Kim HS, Beauchamp JL. Salt bridge chemistry applied
to gas-phase peptide sequencing: Selective fragmentation of
sodiated gas-phase peptide ions adjacent to aspartic acid
residues. J. Am. Chem. Soc. 1998; 120: 3188.
13. Sundqvist B, Kamensky I, Haakansson P, Kjellberg J, Salehpour
M, Widdiyasekera S, Fohlman J, Peterson PA, Roepstorff
P. California-252 plasma desorption time of flight mass
spectroscopy of proteins. Biomed. Mass Spectrom. 1984; 11: 242.
14. Biemann K. Mass spectrometry of peptides and proteins. Annu.
Rev. Biochem. 1992; 61: 977.
15. Mallis LM, Russell DH. Fast atom bombardment–tandem mass
spectrometry studies of organo-alkali metal ions of small
peptides. Anal. Chem. 1986; 58: 1076.
16. Tang X, Ens W, Standing KG, Westmore JB. Daughter ion mass
spectra from cationized molecules of small oligopeptides in a
reflecting time-of-flight mass spectrometer. Anal. Chem. 1988; 60:
1791.
17. Renner D, Spiteller G. Linked scan investigation of
peptide degradation initiated by liquid secondary ion mass
spectrometry. Biomed. Mass Spectrom. 1988; 15: 75.
18. Grese RP, Cerny RL, Gross ML. Metal ion-peptide interactions
in the gas phase: a tandem mass spectrometry study of alkali
metal cationized peptides. J. Am. Chem. Soc. 1989; 111: 2835.
19. Grese RP, Gross ML. Gas-phase interactions of lithium ions and
dipeptides. J. Am. Chem. Soc. 1990; 112: 5098.
20. Lin T, Payne AH, Glish GL. Dissociation pathways of alkali-
cationized peptides: Opportunities for C-terminal peptide
sequencing. J. Am. Soc. Mass Spectrom. 2001; 12: 497.
21. Teesch LM, Adams J. Intrinsic interactions between alkaline
earth metal ions and peptides: a gas-phase study. J. Am. Chem.
Soc. 1990; 112: 4110.
28. Newton KA, McLuckey SA. Generation and manipulation of
sodium cationized peptides in the gas phase. J. Am. Soc. Mass
Spectrom. 2004; 15: 607.
29. Mamer OA, Just G, Li CS, Preville P, Watson S, Young R, Yergey
JA. Enhancement of mass-spectrometric detection of ltc4, ltd4,
and lte4 by derivatization. J. Am. Soc. Mass Spectrom. 1994; 5: 292.
30. Huang ZH, Wu J, Roth KDW, Yang Y, Gage DA, Watson JT.
A Picomole-Scale Method for Charge Derivatization of Peptides
for Sequence Analysis by Mass Spectrometry. Anal. Chem. 1997;
69: 137.
31. Keough T, Youngquist RS, Lacey MP. A method for high-
sensitivity peptide sequencing using postsource decay matrix-
assisted laser desorption ionization mass spectrometry. Proc.
Natl. Acad. Sci. USA 1999; 96: 7131.
32. Lindh I, Sjo¨vall J, Bergman T, Griffiths WJ. Negative-ion
electrospray tandem mass spectrometry of peptides derivatized
with 4-aminonaphthalenesulphonic acid. J. Mass spectrum. 1998;
33: 988.
33. Chen J, Chen Y, Gong P, Jiang Y, Li YM, Zhao YF. Novel
phosphoryl derivatization method for peptide sequencing by
electrospray ionization mass spectrometry. Rapid Commun. Mass
Spectrom. 2002; 16: 531.
34. Chai WG, Yan L, Wang GH, Liang XY, Zhao YF, Ji GJ.
Improvement in sensitivity of fast atom bombardment mass
spectrometry of amino acids by di-isopropylphosphorylation.
Biomed. Environ. Mass Spectrom. 1987; 14: 331.
35. Ai HW, Fu H, Zhao YF. Novel synthetic method of
phosphonamidate peptides and its application in peptide
sequencing via multistage mass spectrometry. Chem. Commun.
2003;; 2724.
36. Tsaprailis G, Somogyi A, Nikolaev EN, Wysocki VH. Refining
the model for selective cleavage at acidic residues in arginine-
containing protonated peptides. Int. J. Mass. Spectrom. 2000; 195:
467.
22. Teesch LM, Adams J. Fragmentations of gas-phase complexes
between alkali metal ions and peptides: metal ion binding to
carbonyl oxygens and other neutral functional groups. J. Am.
Chem. Soc. 1991; 113: 812.
37. Gu CG, Tsaprailis G, Breci L, Wysocki VH. Selective gas-phase
cleavage at the peptide bond terminal to aspartic acid in fixed-
charge derivatives of asp-containing peptides. Ana. Chem. 2000;
72: 5804.
23. Lin T, Glish GL. C-Terminal Peptide Sequencing via Multistage
Mass Spectrometry. Anal. Chem. 1998; 70: 5162.
24. Lee S-W, Kim HS, Beauchamp JL. Salt Bridge Chemistry Applied
to Gas-Phase Peptide Sequencing: Selective Fragmentation of
Copyright 2005 John Wiley & Sons, Ltd.
J. Mass Spectrom. 2005; 40: 772–776