6
888
J . Org. Chem. 1999, 64, 6888-6890
tive ring fusion of substituted m-cyclophanes,14 photo-
Efficien t Syn th esis of
1
2
chemical ring closure of 2,2′-divinylbiphenyls, and
4
,5,9,10-Tetr a h yd r op yr en e: A Usefu l
substitution of 4,5,9,10-tetrahydropyrene, 2, followed by
Syn th etic In ter m ed ia te for th e Syn th esis of
,7-Disu bstitu ted P yr en es
aromatization.9
,10,11,15
Previous syntheses of 2 have been
2
limited in scale or hampered by side reactions. Methods
1
6
for preparation of 2 include oxidation of m-cyclophanes,
†
†
,†
Daniel M. Connor, Scott D. Allen, David M. Collard,*
17
ring closure of biphenyl-2,2′-bis(acetic acid), photo-
†
‡
Charles L. Liotta, and David A. Schiraldi
18
chemical ring closure of 2,2′-divinylbiphenyl, and elec-
trochemical19 and photochemical reduction of pyrene.
8
School of Chemistry and Biochemistry, Molecular
Design Institute, and Polymer Education and Research
Center, Georgia Institute of Technology,
Atlanta, Georgia 30332-0400, KoSa Inc., P.O. Box 5750,
Spartanburg, South Carolina 29304-5750
Reported procedures4
,20,21
for the catalytic hydrogenation
of pyrene to 2 lead to mixtures of products that are
difficult to separate.2 A commonly practiced alternative
to hydrogenation is the cumbersome procedure of metal-
ammonia reduction24 of pyrene to afford the unstable 1,9-
dihydropyrene, acid isomerization to the more stable 4,5-
2,23
Received February 11, 1999
2
5,26
dihydropyrene,
and subsequent reduction by catalytic
or metal-ammonia reduction to af-
9
,20,28
hydrogenation
In tr od u ction
ford 2.2
7,28
Here we report an efficient procedure for the
Although the chemistry of pyrene, 1, is well-known,1,2
direct hydrogenation of pyrene to prepare 2 on a multi-
gram scale. Electrophilic aromatic substitution of 2 takes
place selectively at the 2- and 7-positions to give disub-
stituted analogues. The only previously reported dicar-
boxyl-functionalized 2,7-pyrenes were made by an eight-
step synthesis via cleavage of diphthaloylpyrenes and
by a long route via oxidative coupling of substituted
m-cyclophanes.29 We report a simple conversion of 2 to
there is considerable interest in the synthesis of new
derivatives for investigation of the carcinogenesis of
3
polycylic aromatic hydrocarbons (PAHs), as solvents in
4
5
coal liquification, and as fluorogens. Direct electrophilic
aromatic substitution on the pyrene ring occurs almost
1
3
6
exclusively at the electron rich 1-position, leading to 1-,
1
,3-, 1,6-, 1,8-, 1,3,6-, and 1,3,6,8-substituted products.
2
,7-diacetyl-4,5,9,10-tetrahydropyrene, 4, followed by
Only tert-butylation is directed to the 2- (and 7-) posi-
oxidation, methylation, and aromatization to give di-
methyl 2,7-pyrenedicarboxylate, 8, on a preparative scale.
The synthesis of significant quantities of 2, 4, and 8 could
7
tion(s). Pyrenes substituted in the 2- (and 7-) position(s)
have been sought as intermediates for the synthesis of
higher PAHs8
,910,11
and as monomers for the synthesis of
electroluminescent polymers.12 Synthesis of 2,7-substi-
tuted pyrenes requires indirect routes such as the base-
promoted decomposition of diphthaloylpyrenes,13 oxida-
(
14) Yamato, T.; Ide, S.; Tokuhisa, K.; Tashiro, M. J . Org. Chem.
992, 57, 271-275. (b) Umemoto, T.; Satani, S.; Sakata, Y.; Misumi,
S. Tetrahedron Lett. 1975, 36, 3159-3162.
1
(
15) Bolton, R. J . Chem. Soc. 1964, 4637-4640. (b) Minabe, M.;
Mochizuki, H.; Yoshida, M.; Toda, T. Bull. Chem. Soc. J pn. 1989, 62,
68-72. (c) Harvey, R. G.; Schmolka, S.; Cortez, C.; Lee, H. Synth.
Commun. 1988, 18, 2207-2210.
*
Corresponding author.
Georgia Institute of Technology.
KoSa Inc.
†
‡
(16) Baker, W.; McOmie, J . F. W.; Norman, J . M. J . Chem. Soc. 1951,
1114-1121. (b) Boekelheide, V.; Anderson, P. H.; Hylton, T. A. J . Am.
Chem. Soc. 1974, 96, 1558-1563.
(1) Harvey, R. G. Polycyclic Aromatic Compounds; Wiley-VCH: New
York, 1997. (b) Clar, E. Polycyclic Hydrocarbons; Academic Press:
London, 1964.
(17) Chatterjee, N. N.; Bose, A.; Roy, H. B. J . Indian Chem. Soc.
1947, 24, 169-172.
(
2) Vollmann, H.; Becker, H.; Corell, M.; Streek, H. Liebigs Ann.
Chem. 1937, 531, 1-125.
3) El-Baykoumy, K. Chem. Res. Toxicol. 1992, 5, 585-590. (b) Rice,
J . E.; Rivenson, A.; Braley, J .; LaVoie, E. J . J . Toxicol. Environ. Health
(18) Padwa, A.; Doubleday: C.; Mazzu, A. J . Org. Chem. 1977, 42,
3271-3279.
(
(19) Hanson, P. E.; Blaabjerg, O.; Berg, A. Acta Chem. Scand. B
1978, 32, 720-726.
1
1
1
3
2
987, 21, 525-532.
4) Minabe, M.; Nakada, K. Bull. Chem. Soc. J pn. 1985, 58, 1962-
967.
(
(20) Fu, P. P.; Lee, H. M.; Harvey, R. G. J . Org. Chem. 1980, 45,
2797-2803.
(5) Brocklehurst, P. J .; Hemingway, E. U.S. Patent 3,657,139, April
(21) Friedman, S.; Metlin, S.; Svedi, A.; Wender, I. J . Am. Chem.
Soc. 1959, 24, 1287-1289. (c) Korre, S. C.; Klein, M. T.; Quann, R. J .
Ind. Eng. Chem. Res. 1995, 34, 101-117. (d) Yalpani, M. Chem. Ber.
1990, 123, 983-987. (e) Berg, A.; Lam, J .; Hansen, P. E. Acta Chem.
Scand. B 1986, 40, 665-667. (f) Chirico, R. D.; Knipmeyer, S. E.;
Nguyen, A.; Smith, N. K.; Steele, W. V. J . Chem. Thermodyn. 1993,
25, 729-761. (g) Yalpani, M.; K o¨ ster, R. Chem. Ber. 1990, 123, 719-
724. (h) Cameron, J . M. L.; Cook, J . W.; Graham, W. J . Chem. Soc.
1945, 286-288.
8, 1972.
(6) Dewar, M. J . S.; Dennington, R. D. J . Am. Chem. Soc. 1989, 111,
804-3808.
(7) Yamato, T.; Miyazawa, A.; Tashiro, M. Chem. Ber. 1993, 126,
505-2512. (b) Rodenburg, L.; Brandsma, R.; Tintel, C.; Thuijl, J . van;
Lugtenburg, J .; Cornelisse, J . Recl. Trav. Chim. Pays-Bas 1986, 105,
56-161. (c) Yozo, M.; Yamano, E.; Miyazawa, A.; Tashiro, M. J . Chem.
Soc., Perkin Trans. 2 1996, 3, 359-364.
8) Van der Braken-van Leersum, A. M.; Tintel, C.; Van’t Zelfde,
M.; Cornelisse, J .; Lugtenburg, J . Recl. Trav. Chim. Pays-Bas 1987,
1
(
(22) Eisenbraun, E. J .; Webb, T. E.; Burnham, J . W.; Harris, L. E.
Org. Prep. Proced. Int. 1971, 3, 249-254.
1
06, 120-128.
(23) Harvey, R. G.; Halonen, M. J . Chromatogr. 1966, 25, 294-302.
(24) Harvey, R. G. Synthesis 1970, 4, 161-172.
(9) Harvey, R. G., Konieczny, M.; Pataki, J . J . Org. Chem. 1983,
4
8, 2930-2932.
(25) Harvey, R. G.; Rabideau, P. W. Tetrahedron. Lett. 1970, 42,
3695-3698. (b) Schnieders, C.; M u¨ llen, K.; Huber, W. Tetrahedron
1984, 40, 1701-1711.
(
(
10) Lee, H.; Harvey, R. G. J . Org. Chem. 1986, 51, 2847-2848.
11) Klassen, S. E.; Daub, G. H.; VanderJ agt, D. L. J . Org. Chem.
1
983, 48, 4861-4366. (b) Miller, D. W.; Herreno-Saenz, D.; Huang, K.
(26) Harvey, R. G.; Arzadon, L.; Grant, J .; Urberg, K. J . Am. Chem.
Soc. 1969, 91, 4535-4541.
H.; Heinze, T. M.; Fu, P. P. J . Org. Chem. 1992, 57, 3746-3748.
(12) Kreyenschmidt, M.; Baumgarten, M.; Tyutyulkov, N.; M u¨ llen,
(27) Rodenburg, L.; Floor, M.; Lefeber, A.; Cornelisse, J .; Lugten-
burg, J . Recl. Trav. Chim. Pays-Bas 1988, 107, 1-8.
(28) Musa, A.; Sridharan, B.; Lee, H.; Mattern, D. L. J . Org. Chem.
1996, 61, 5481-5484.
K. Angew. Chem., Int. Ed. Engl. 1994, 33, 1957-1959. (b) Kreyen-
schmidt, M.; Uckert, F.; M u¨ llen, K. Macromolecules 1995, 28, 4577-
4
4
582.
(13) Flammang, R.; Martin, R. H. Bull Soc. Chim. Belg. 1971, 80,
(29) Staab, H. A.; Kirrstetter, R. G. H. Liebigs Ann. Chem. 1979,
886-898.
33-438.
1
0.1021/jo990257j CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/10/1999