sion in human osteosarcoma cells10b and in HL-60 cells10d
induced by 1. Moreover, TEI-9647 (2) shows antagonistic
action on the genomic-mediated calcium metabolism regu-
1
0e
lated by 1 in vivo. Recently, TEI-9647 (2) has received
considerable attention because of its possibility to be a
potential agent to inhibit the enhanced bone resorption in
1
3
patients with Paget’s disease, which is known as the most
flagrant example of disordered bone remodeling and the
second most common bone disease after osteoporosis in
1
3g
Anglo-Saxons.
The unique structures and unprecedented biological pro-
files of 2 and 3 prompted us to investigate the structure-
Figure 1.
3
activity relationships of the vitamin D lactones from the
standpoint of searching for more potential anti-vitamin D
molecules. In particular, we focused on the influence of the
structure including the stereochemistry of the lactone moiety
on the VDR binding affinity and antagonistic activity, and
we planned to introduce a methyl group into the C24 position
on the lactone ring of 2 and 3 (4-7) (Figure 3).
binding affinity to VDR relative to the natural hormone 1
5
a,b
(Figure 1).
Although more than 2000 analogues of 1 have been
8
synthesized over the past few decades, only two different
types of antagonists have been described. In 1999, studies
on the modification of the side-chain structure based on the
9
1
R,25-dihydroxyvitamin D
3
26,23-lactone metabolite de-
rived from 1 led to the discovery of the TEI-9647 (2) and
TEI-9648 (3) (Figure 2).1
0,11
3
Both vitamin D analogues 2
Figure 3.
Figure 2.
For the synthesis of 24-methylvitamin D lactones 4-7,
3
we utilized A-ring/CD-ring coupling methodology.14 First,
we synthesized the CD-ring precursors, which have the
and 3, which have an R-methylene-γ-butyrolactone part on
the side chain, are the first specific antagonists of VDR-
mediated genomic action of 1.12 Namely, 2 and 3 inhibit
2
3,24-syn lactone moiety, using Cr-mediated syn-selective
1
5
allylation (Scheme 1). According to Oshima’s protocol,
1
0a
differentiation of human leukemia cells (HL-60 cells), as
well as 25-hydroxyvitamin D 24-hydroxylase gene expres-
(
11) The other type of VDR antagonists of 25-carboxylic esters
3
ZK159222 and ZK168281, see: (a) Herdick, M.; Steinmeyer, A.; Carlberg,
C. J. Biol. Chem. 2000, 275, 16506. (b) Bury, Y.; Steinmeyer, A.; Carlberg,
C. Mol. Pharmacol. 2000, 58, 1067. (c) Herdick, M.; Steinmeyer, A.;
Carlberg, C. Chem. Biol. 2000, 7, 885. (d) Toell, A.; Gonzalez, M. M.;
Ruf, D.; Steinmeyer, A.; Ishizuka, S.; Carlberg, C. Mol. Pharmacol. 2001,
59, 1478. (e) V a¨ is a¨ nen, S.; Per a¨ kyl a¨ , M.; K a¨ rkk a¨ inen, J. I.; Steinmeyer,
A.; Carlberg, C. J. Mol. Biol. 2002, 315, 229.
(7) This concept was also good for 19-nor 1; see: Ono, K.; Yoshida,
A.; Saito, N.; Fujishima, T.; Honzawa, S.; Suhara, Y.; Kishimoto, S.;
Sugiura, T.; Waku, K.; Takayama, H.; Kittaka, A. J. Org. Chem. 2003, 68,
7
407.
8) For a review on synthesis of vitamin D3 analogues, see: Zhu, G. D.;
Okamura, W. H. Chem. ReV. 1995, 95, 1877. See also ref 2.
9) (a) Ishizuka, S.; Ishimoto, S.; Norman, A. W. Biochemistry 1984,
3, 1473. (b) Ishizuka, S.; Ohba, T.; Norman, A. W. In Vitamin D:
(
(12) Carlberg, C. J. Cell. Biochem. 2003, 88, 274.
(
(13) For recent reports on Paget’s bone disease, see: (a) Menaa, C.;
Barsony, J.; Reddy, S. V.; Cornish, J.; Cundy, T.; Roodman, G. D. J. Bone
Miner. Res. 2000, 15, 228. (b) Kurihara, N.; Reddy, S. V.; Menaa, C.;
Anderson, D.; Roodman, G. D. J. Clin. InVest. 2000, 105, 607. (c) Menaa,
C.; Reddy, S. V.; Kurihara, N.; Maeda, H.; Anderson, D. Cundy, T.; Cornish,
J.; Singer, F. R.; Bruder, J. M.; Roodman, G. D. J. Clin. InVest. 2000, 105,
1833. (d) Leach, R. J.; Singer, F. R.; Roodman, G. D. J. Clin. Endo. Metab.
2001, 86, 24. (e) Reddy, S. V.; Kurihara, N.; Menaa, C.; Landucci, G.;
Forthal, D.; Koop, B. A.; Windle, J. J.; Roodmann, G. D. Endocrinology
2001, 142, 2898. (f) Friedrichs, W. E.; Reddy, S. V.; Bruder, J. M.; Cundy,
T.; Cornish, J.; Singer, F. R.; Roodman, G. D. J. Bone Miner. Res. 2002,
17, 145. (g) Reddy, S. V.; Kurihara, N.; Menaa, C.; Roodman, G. D. ReV.
Endocr. Metab. Disord. 2001, 2, 195.
2
Molecular, Cellular and Chemical Endocrinology; Norman, A. W., Schaefer,
K., Grigoleit, H. G., von Herrath, D., Eds.; Walter de Gruyter: Berlin, 1988;
pp 143-144.
(10) (a) Miura, D.; Manabe, K.; Ozono, K.; Saito, M.; Gao, Q.; Norman,
A. W.; Ishizuka, S. J. Biol. Chem. 1999, 274, 16392. (b) Ozono, K.; Saito,
M.; Miura, D.; Michigami, T.; Nakajima, S.; Ishizuka, S. J. Biol. Chem.
1
999, 274, 32376. (c) Miura, D.; Manabe, K.; Gao, Q.; Norman, A. W.;
Ishizuka, S. FEBS Lett. 1999, 460, 297. (d) Ishizuka, S.; Miura, D.; Eguchi,
H.; Ozono, K.; Chokki, M.; Kamimura, T.; Norman, A. W. Arch. Biochem.
Biophys. 2000, 380, 92. (e) Ishizuka, S.; Miura, D.; Ozono, K.; Chokki,
M.; Mimura, H.; Norman, A. W. Endocrinol. 2001, 142, 59. (f) Ishizuka,
S.; Miura, D.; Ozono, K.; Saito, M.; Eguchi, H.; Chokki, M.; Norman, A.
W. Steroids 2001, 66, 227.
(14) Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc. 1992, 114,
9836.
4860
Org. Lett., Vol. 5, No. 25, 2003