Compositional studies of human RPE lipofuscin
[17] B. S. Winkler, M. E. Boulton, J. D. Gottsch, P. Sternberg. Oxidative
damage and age-related macular degeneration. Mol. Vis. 1999,
5, 32.
[18] F. G. Holz, C. Bellman, S. Staudt, F. Schutt, H. E. Volcker. Fundus
autofluorescence and development of geographic atrophy in age-
related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2001, 42,
1051.
[19] H. R. Taylor, B. Munoz, S. West, N. M. Bressler, S. B. Bressler,
F. S. Rosenthal. Visible light and risk of age-related macular
degeneration. Trans. Am. Ophthalmol. Soc. 1990, 88, 163; discussion
173.
[20] G. E. Eldred. Age pigment structure. Nature 1993, 364, 396.
[21] G. E. Eldred, M. L. Katz. Fluorophores of the human retinal pigment
epithelium: separation and spectral characterization. Exp. Eye Res
1988, 47, 71.
[22] G. E. Eldred, M. R. Lasky. Retinal age pigments generated by self-
assembling lysosomotropic detergents. Nature 1993, 361, 724.
[23] C. A. Parish, M. Hashimoto, K. Nakanishi, J. Dillon, J. Sparrow.
Isolationandone-steppreparationofA2Eandiso-A2E,fluorophores
from human retinal pigment epithelium. Proc. Natl. Acad. Sci. USA
1998, 95, 14609.
[24] L. Ragauskaite, R. C. Heckathorn, E. R. Gaillard. Environmental
effects on the photochemistry of A2-E, a component of human
retinal lipofuscin. Photochem. Photobiol. 2001, 74, 483.
[25] K. Reszka, G. E. Eldred, R. H. Wang, C. Chignell, J. Dillon. The
photochemistry of human retinal lipofuscin as studied by EPR.
Photochem. Photobiol. 1995, 62, 1005.
Figure 8. The MS/MS of m/z 858 in lipofuscin. Peaks corresponding to m/z
858 with the loss of 106 (m/z 752), 150 (m/z 708), 174 (m/z 684) and 190
(m/z 668) are identified.
[26] S. Ben-Shabat, Y. Itagaki, S. Jockusch, J. R. Sparrow, N. J. Turro,
K. Nakanishi. Formation of a nonaoxirane from A2E, a lipofuscin
fluorophore related to macular degeneration, and evidence of
singlet oxygen involvement. Angew. Chem. (Int. Ed.) 2002, 41, 814.
[27] J. Dillon, Z. Wang, L. B. Avalle, E. R. Gaillard. The photochemical
oxidation of A2E results in the formation of a 5,8,5ꢁ,8ꢁ-bis-furanoid
oxide. Exp. Eye Res. 2004, 79, 537.
References
[1] F. C. Delori, D. G. Goger, C. K. Dorey. Age-related accumulation and
spatial distribution of lipofuscin in RPE of normal subjects. Invest.
Ophthalmol. Vis. Sci. 2001, 42, 1855.
[28] Z. Wang, L. M. Keller, J. Dillon, E. R. Gaillard. Oxidation of A2E results
in the formation of highly reactive aldehydes and ketones.
Photochem. Photobiol. 2006, 82, 1251.
[29] E. R. Gaillard, L. B. Avalle, L. M. Keller, Z. Wang, K. J. Reszka,
J. P. Dillon. A mechanistic study of the photooxidation of A2E, a
component of human retinal lipofuscin. Exp. Eye Res. 2004, 79, 313.
[30] L. S. Murdaugh,L. B. Avalle,S. Mandal,A. E. Dill,J. Dillon,J. D. Simon,
E. R. Gaillard. J. Mass Spectrom. 2010, 45, 1139.
[31] C. R. Enzell, R. A. Appleton, I. Wahlberg. Terpenes and terpenoids.
In Biochemical Applications of Mass Spectrometry, G. R. Waller (Ed.).
Wiley: New York, 1972, 375.
[32] G. Waller. Biochemical Applications of Mass Spectrometry. Wiley-
Interscience: New York, 1972, 377.
[33] Y. Imanishi, V. Gerke, K. Palczewski. Retinosomes: new insights into
intracellular managing of hydrophobic substances in lipid bodies.
J. Cell Biol. 2004, 166, 447.
[34] R. J. Barry, F. J. Canada, R. R. Rando. Solubilization and partial
purification of retinyl ester synthetase and retinoid isomerase from
bovine ocular pigment epithelium. J. Biol. Chem. 1989, 264, 9231.
[2] C. K. Dorey, G. Wu, D. Ebenstein, A. Garsd, J. J. Weiter. Cell loss in the
aging retina. Relationship to lipofuscin accumulation and macular
degeneration. Invest. Ophthalmol. Vis. Sci. 1989, 30, 1691.
[3] L. Feeney-Burns, E. S. Hilderbrand, S. Eldridge. Aging human RPE:
morphometric analysis of macular, equatorial, and peripheral cells.
Invest. Ophthalmol. Vis. Sci. 1984, 25, 195.
[4] E. R. Gaillard, S. J. Atherton, G. Eldred, J. Dillon. Photophysical
studies on human retinal lipofuscin. Photochem. Photobiol. 1995,
61, 448.
[5] F. G. Holz, F. Schutt, J. Kopitz, G. E. Eldred, F. E. Kruse, H. E. Volcker,
M. Cantz. Investigative ophthalmology &visualscience 1999, 40, 737.
[6] P. F. Lopez, I. H. Maumenee, Z. de la Cruz, W. R. Green. Autosomal-
dominant fundus flavimaculatus. Clinicopathologic correlation.
Ophthalmology 1990, 97, 798.
[7] M. F. Rabb, M. O. Tso, G. A. Fishman. Cone-rod dystrophy. A clinical
and histopathologic report. Ophthalmology 1986, 93, 1443.
[8] T. A. Weingeist, J. L. Kobrin, R. C. Watzke. Histopathology of Best’s
macular dystrophy. Arch. Ophthalmol. 1982, 100, 1108.
[9] M. Boulton, N. M. McKechnie, J. Breda, M. Bayly, J. Marshall. The
formation of autofluorescent granules in cultured human RPE.
Invest. Ophthalmol. Vis. Sci. 1989, 30, 82.
[10] L. Feeney-Burns, G. E. Eldred. The fate of the phagosome:
conversion to ‘age pigment’ and impact in human retinal pigment
epithelium. Trans. Ophthalmol. Soc. UK 1983, 103(Pt 4), 416.
[11] S. Davies, M. H. Elliott, E. Floor, T. G. Truscott, M. Zareba, T. Sarna,
F. A. Shamsi, M. E. Boulton. Free radical biology & medicine 2001, 31,
256.
[12] J. J. Weiter, F. C. Delori, G. L. Wing, K. A. Fitch. Retinal pigment
epithelial lipofuscin and melanin and choroidal melanin in human
eyes. Invest. Ophthalmol. Vis. Sci. 1986, 27, 145.
[13] L. B. Avalle, J. Dillon, E. R. Gaillard. Action spectrum for singlet
oxygen production by human retinal lipofuscin. Photochem.
Photobiol. 2005, 81, 1347.
[14] M. Rozanowska, J. Wessels, M. Boulton, J. M. Burke, M. A. Rodgers,
T. G. Truscott, T. Sarna. Free radical biology & medicine 1998, 24,
1107.
[35] P. N. MacDonald, D. E. Ong. Evidence for
a
lecithin-retinol
acyltransferase activity in the rat small intestine. J. Biol. Chem. 1988,
263, 12478.
[36] R. R. Rando. The biochemistry of the visual cycle. Chem. Rev. 2001,
101, 1881.
[37] J. C. Saari, D. L. Bredberg. Lecithin : retinol acyltransferase in retinal
pigment epithelial microsomes. J. Biol. Chem. 1989, 264, 8636.
[38] A. Lakkaraju, S. C. Finnemann, E. Rodriguez-Boulan. The lipofuscin
fluorophoreA2Eperturbscholesterolmetabolisminretinalpigment
epithelial cells. Proc. Natl. Acad. Sci. USA 2007, 104, 11026.
[39] A. V. Ershov, N. Parkins, W. J. Lukiw, N. G. Bazan. Modulation of early
response gene expression by prostaglandins in cultured rat retinal
pigment epithelium cells. Curr. Eye Res. 2000, 21, 968.
[40] C. A. Curcio, C. L. Millican, T. Bailey, H. S. Kruth. Accumulation of
cholesterol with age in human Bruch’s membrane. Invest.
Ophthalmol. Vis. Sci. 2001, 42, 265.
[41] N. M. Haralampus-Grynaviski, L. E. Lamb, C. M. Clancy, C. Skumatz,
J. M. Burke, T. Sarna, J. D. Simon. Proceedings of the National
Academy of Sciences of the United States of America 2003, 100,
3179.
[15] J. Wassell, S. Davies, W. Bardsley, M. Boulton. The photoreactivity of
the retinal age pigment lipofuscin. J. Biol. Chem. 1999, 274, 23828.
[16] S. Sundelin, U. Wihlmark, S. E. Nilsson, U. T. Brunk. Lipofuscin
accumulation in cultured retinal pigment epithelial cells reduces
their phagocytic capacity. Curr. Eye Res. 1998, 17, 851.
c
J. Mass. Spectrom. 2011, 46, 90–95
Copyright ꢀ 2010 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/jms