and the use of inorganic2,3,25-27 and polymeric supports.1,4,28
Our research is focused on designing immobilized catalysts
capable of performing multistep one-pot reactions. The benefits
of performing multiple reactions simultaneously include lower
input and labor costs and decreased waste production. We are
interested in a transition metal immobilization approach where
the metal is site-isolated within the support throughout the entire
reaction. Palladium catalyzes a broad range of carbon-carbon,
carbon-oxygen, and carbon-nitrogen bond-forming reactions
and is an attractive choice for use in tandem catalysis.29,30
Palladium, however, may not be compatible with other catalytic
materials; therefore, the catalyst must remain site-isolated within
the support.
Investigating PdEnCat Catalysis
Steven J. Broadwater and D. Tyler McQuade*
Department of Chemistry and Chemical Biology,
Baker Laboratory, Cornell UniVersity,
Ithaca, New York 14853-1301
ReceiVed August 25, 2005
One of the most promising methods of catalyst immobilization
is microencapsulation. Ley and co-workers have used microen-
capsulation techniques to encapsulate Pd(OAc)2 within a poly-
urea matrix that can include phosphine ligands.22,31-35 These
commercially available PdEnCat catalysts can be used to
(13) Blum, J.; Gelman, F.; Abu-Reziq, R.; Miloslavski, I.; Schumann,
H.; Avnir, D. Polyhedron 2000, 19, 509-512.
(14) Sarussi, L.; Blum, J.; Avnir, D. J. Sol.-Gel Sci. Technol. 2000, 19,
17-22.
(15) Gelman, F.; Blum, J.; Avnir, D. J. Am. Chem. Soc. 2002, 124,
14460-14463.
(16) Gelman, F.; Blum, J.; Avnir, D. New J. Chem. 2003, 27, 205-207.
(17) Gelman, F.; Blum, J.; Schumann, H.; Avnir, D. J. Sol.-Gel Sci.
Technol. 2003, 26, 43-46.
The catalytic behavior of three commercially available
PdEnCat catalysts was explored. When the three-phase test
was used, it was demonstrated that these microencapsulated
palladium catalysts act as heterogeneous sources, or reser-
voirs, for soluble, catalytically active species. In addition,
kinetic data coupled with transmission electron microscopy
and solvent-dependent investigations were used to support
this conclusion.
(18) Price, K. E.; McQuade, D. T. Chem. Commun. 2005, 1714-1716.
(19) Jung, H. M.; Price, K. E.; McQuade, D. T. J. Am. Chem. Soc. 2003,
125, 5351-5355.
(20) Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach,
A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S.
J. J. Chem. Soc., Perkin Trans. 1 2000, 3815-4195.
(21) Ley, S. V.; Baxendale, I. R. Nat. ReV. Drug DiscoVery 2002, 1,
573-586.
(22) Ley, S. V.; Ramarao, C.; Gordon, R. S.; Holmes, A. B.; Morrison,
A. J.; McConvey, I. F.; Shirley, I. M.; Smith, S. C.; Smith, M. D. Chem.
Commun. 2002, 1134-1135.
(23) Ley, S. V.; Mitchell, C.; Pears, D.; Ramarao, C.; Yu, J. Q.; Zhou,
W. Z. Org. Lett. 2003, 5, 4665-4668.
Immobilized transition metal catalysts offer the promise of
easy handling, straightforward separation from reaction mixtures,
and decreased product contamination caused by metal leaching.1-5
Immobilization approaches are varied and include polymer
incarceration,6-12 sol-gels13-17 and polymer encapsulation,18-24
(24) Ley, S. V.; Ramarao, C.; Lee, A. L.; Ostergaard, N.; Smith, S. C.;
Shirley, I. M. Org. Lett. 2003, 5, 185-187.
(25) Bhanage, B. M.; Arai, M. Catal. ReV. 2001, 43, 315-344.
(26) Smith, M. D.; Stepan, A. F.; Ramarao, C.; Brennan, P. E.; Ley, S.
V. Chem. Commun. 2003, 2652-2653.
(27) Thomas, J. M.; Raja, R. J. Organomet. Chem. 2004, 689, 4110-
4124.
(1) Leadbeater, N. E.; Marco, M. Chem. ReV. 2002, 102, 3217-3273.
(2) Wight, A. P.; Davis, M. E. Chem. ReV. 2002, 102, 3589-3613.
(3) De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem. ReV.
2002, 102, 3615-3640.
(4) Uozumi, Y. Immobilized Catalysts; Springer-Verlag: Berlin, 2004;
Vol. 242, pp 77-112.
(5) Horn, J.; Michalek, F.; Tzschucke, C. C.; Bannwarth, W. Immobilized
Catalysts; Springer-Verlag: Berlin, 2004; Vol. 242, pp 43-75.
(6) Nagayama, S.; Endo, M.; Kobayashi, S. J. Org. Chem. 1998, 63,
6094-6095.
(7) Akiyama, R.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3412-
3413.
(8) Kobayashi, S.; Akiyama, R. Chem. Commun. 2003, 449-460.
(9) Akiyama, R.; Sagae, T.; Sugiura, M.; Kobayashi, S. J. Organomet.
Chem. 2004, 689, 3806-3809.
(10) Hagio, H.; Sugiura, M.; Kobayashi, S. Synlett 2005, 813-816.
(11) Okamoto, K.; Akiyama, R.; Kobayashi, S. Org. Lett. 2004, 6, 1987-
1990.
(28) Clapham, B.; Reger, T. S.; Janda, K. D. Tetrahedron 2001, 57,
4637-4662.
(29) Heck, R. F. Palladium reagents in organic synthesis; Academic
Press: Orlando, FL, 1985.
(30) Tsuji, J. Palladium reagents and catalysts: InnoVations in organic
synthesis; Wiley & Sons: New York, 1995.
(31) Bremeyer, N.; Ley, S. V.; Ramarao, C.; Shirley, I. M.; Smith, S. C.
Synlett 2002, 1843-1844.
(32) Ramarao, C.; Ley, S. V.; Smith, S. C.; Shirley, I. M.; DeAlmeida,
N. Chem. Commun. 2002, 1132-1133.
(33) Ley, S. V.; Ramarao, C.; Shirley, I. M.; Smith, S. C.; Tapolczay,
D. J. Microencapsulated Catalyst Methods of Preparation and Methods of
Use Thereof. U.S. Patent Application. US20040254066, 2004.
(34) Holmes, A. B.; Ley, S. V.; Gordon, R. S.; Ramarao, C.; Early, T.
R. Use of Microencapsulated Transition Metal Reagents For Reactions in
Supercritical Fluids. U.S. Patent Application. US20050010068, 2005.
(35) Pears, D. A.; Treacher, K. E.; Nisar, M. Microencapsulated Catalyst-
Ligand System, Methods of Preparation and Methods of Use Thereof. World
Patent Application. WO2005016510, 2005.
(12) Okamoto, K.; Akiyama, R.; Kobayashi, S. J. Org. Chem. 2004, 69,
2871-2873.
10.1021/jo0517904 CCC: $33.50 © 2006 American Chemical Society
Published on Web 01/28/2006
J. Org. Chem. 2006, 71, 2131-2134
2131