Journal of the American Chemical Society
Page 4 of 5
Angew. Chem., Int. Ed. 2006, 45, 5974. (d) Czaja, A. U.; Trukhanb,
N.; Müller, U. Chem. Soc. Rev. 2009, 38, 1284.
using acetophenone as carbonyl compound with yields
between 50ꢀ87% (Table S1). Interestingly, in all cases
the Strecker product was obtained, with the highest yield
for the cases of [In+Ga] (87%) and InGaPFꢀ3 (80%)
materials. The different results between aldehyde and
ketone based reactions presumably indicate differences
in the mechanistic pathway, possibly related to differꢀ
ences in the activation time of the carbonyl groups. Curꢀ
rent work is being carried out to find out the origin of
these differences.
1
2
3
4
5
6
7
8
(3) (a) Corma, A.; García H.; Llabrés i Xamena, F. X. Chem. Rev.
2010, 110, 4606. (b) Gándara, F.; GómezꢀLor, B.; GutiérrezꢀPuebla,
E.; Iglesias, M.; Monge, M. A.; Proserpio, D. M.; Snejko, N. Chem.
Mater. 2008, 20, 72.
(4) Gándara, F.; UribeꢀRomo, F. J.; Britt, D. K.; Furukawa, H.; Lei,
L.; Cheng, R.; Duan, X.; O'Keeffe, M.; Yaghi, O. M. Chem. Eur. J.
2012, 18, 10595.
(5) (a) Meyer, L. V.; Schönfeld, F.; MüllerꢀBuschbaum, K. Chem.
Commun. 2014, 50, 8093. (b) Okawa, H.; Sadakiyo, M.; Yamada, T.;
Maesato, M.; Ohba, M.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135,
2256. (c) Wang, L. J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova,
K. E.; Peri, D.; Yaghi, O. M. Inorg. Chem. 2014, 53, 5881.
(6) (a) Katz, M. J.; Mondloch, J. E.; Totten, R. K.; Park, J. K.; Nguꢀ
yen, S. T.; Farha, O. K.; Hupp, J. T. Angew. Chem. Int. Ed. 2014, 53,
497. (b) Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y.;
Nosheen, F.; Saleem, F.; He, W.; Wang, X. Angew. Chem. Int. Ed.
2014, 53, 12517. (c) Das, M. C.; Xiang, S.; Zhang, Z.; Chen, B.
Angew. Chem. Int. Ed. 2011, 50, 10510. (d) RaseroꢀAlmansa, A. M.;
Corma, A.; Iglesias, M.; Sánchez, F. Green Chem. 2014,16, 3522.
(7) (a) Strecker. D. Ann. Chem. Pharm., 1850, 75, 27. (b) Kaur, P.;
Wever, W.; Pindi, S.; Milles, R.; Gu, P.; Shi, M.; Li, G. Green Chem.
2011, 3, 1288.
(8) (a) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359. (b)
Groger H. Chem. Rev. 2003, 103, 2795.
(9) (a) Ishitani, H.; Komiyama, S.; Kobayashi, S. Angew. Chem. Int.
Ed. 1998, 37, 3186. (b) Galletti, P.; Pori M.; Giacomini, D. Eur. J.
Org. Chem. 2011, 3896 and references therein.
(10) (a) Singh, A. P.; Ali, A.; Gupta, R. Dalton Trans. 2010, 39, 8135.
(b) Choi, J.; Yang, Y. Y.; Kim, H. J.; Son, S. U. Angew. Chem. Int.
Ed. 2010, 49, 7718. (c) Dekamin, M. G.; Azimoshan, M.; Ramezani,
L. Green Chem. 2013, 15, 811. (d) Rajabi, F.; Ghiassian, S.; Saidi, M.
R. Green Chem. 2010, 12, 1349.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In conclusion, this paper shows how the activity
of a heterogeneous catalyst can be controlled by moduꢀ
lating the ratio of different metals occupying the same
crystallographic position of the framework. This reveals
a strategy to use solid solution MOFs in multicomponent
catalytic reactions.
ASSOCIATED CONTENT
Complete synthesis and characterization details and crystalꢀ
lographic information (CIF files) can be found in the supꢀ
porting information. This material is available free of
Corresponding Author
ACKNOWLEDGMENT
This work has been supported by the Spanish Ministry of
Economy and Competitiveness (MINECO) projects
MAT2010ꢀ17571, MAT2013ꢀ45460ꢀR, MAT2011ꢀ29020ꢀ
C02ꢀ02, FAMA S2009/MATꢀ1756 Comunidad Autónoma
de Madrid, and ConsoliderꢀIngenio CSD2006ꢀ2001.
L.M.A.ꢀD. acknowledges a FPI scholarship from MINECO
and Fondo Social Europeo from the European Union. F.G.
acknowledges MINECO for funding through the “Juan de
la Cierva” program.
(11) (a) Grondal, C.; Jeanty, M.; Enders, D. Nature Chemistry 2010,
167. (b) Simón, L.; Goodman, J. M. J. Am. Chem. Soc. 2009, 131,
4070. (c) Davies, H. M. L.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38,
2981.
(12) (a) Groeger, H. Chem. Rev. 2003, 103, 2795. (b) Karimi, B.;
Maleki, A. Chem. Commun. 2009, 5180. (c) Yet, L. Angew. Chem.
Int. Ed. 2001, 40, 875.
(13) (a) Trost, B. M. Science 1991, 254, 1471. (b) Newhouse, T.;
Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010.
(14) Reinsch, H.; Krüger, M.; Marrot, J.; Stock, N. Inorg. Chem.
2013, 52, 1854.
(15) Gándara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M.; J. Am. Chem.
Soc. 2014, 136, 5271.
(16) (a) Volkringer, C.; Loiseau, T.; Guillou, N.; Ferey, G.; Elkaim,
E.; Vimont, A. Dalton Trans. 2009, 2241. (b) AguirreꢀDíaz, L. M.;
Iglesias, M.; Snejko, N.; GutiérrezꢀPuebla, E.; Monge, M. A. Crys-
tengcomm. 2013, 15, 9562.
(17) Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.;
Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504.
REFERENCES
(1) Furukawa, H.; Cordova, K.; O'Keeffe, M.; Yaghi, O. M. Science
2013, 341, 974.
(2) (a) Morris, R. E.; Wheatley, P. S.; Angew. Chem. Int. Ed. 2008,
47, 4966. (b) Férey, G. Chem. Soc. Rev. 2008, 37, 191. (c) Horcajada,
P.; Serre, C.; ValletꢀRegı, M.; Sebban, M.; Taulelle, F.; Férey, G.
Table of Content graphic
ACS Paragon Plus Environment