Journal of Chemical & Engineering Data
Article
Shekaari, H. Density and speed of sound of Lithium bromide with
organic solvents: Measurement and correlation. J. Chem. Thermodyn.
2007, 39, 1649−1660.
(13) Rowland, D.; May, P. M. A Pitzer-Based Characterization of
Aqueous Magnesium Chloride, Calcium Chloride and Potassium
Iodide Solution Densities to High Temperature and Pressure. Fluid
Phase Equilib. 2013, 338, 54−62.
(14) Lal, B.; Sahin, M.; Ayranci, E. Volumetric Studies to Examine
the Interactions of Imidazolium Based Ionic Liquids With Water by
Means of Density and Speed of Sound Measurements. J. Chem.
Thermodyn. 2012, 54, 142−147.
(15) Hepler, L. G. Thermal expansion and structure in water and 658
aqueous solutions. Can. J. Chem. 1969, 47, 4613−4617.
CONCLUSIONS
■
The influence of the cation and anion of ILs on their volumetric
properties was studied via density measurements of aqueous
solutions of the ILs [BMIm]Cl, [BMIm]Br, [BMIm][BF4],
[HMIm]Br, [OMIm]Br, [MMIm][MSO4], and [EMIm]-
[ESO4] at T = (288.15 to 318.15) K. The standard partial
molar volumes of the ILs with the cation [BMIm]+ show the
order BF4− > Br− > Cl−, and those of the ILs with the common
anion Br− have the order [OMIm]+ > [HMIm]+ > [BMIm]+.
The V0ϕ values also increase as both the cation and anion of IL
become larger in the sequence [EMIm][ESO4] > [MMIm]-
[MSO4]. The resulting positive values of partial molar
expansibilities (E0ϕ) for all the ILs indicate that the standard
partial molar volumes increase as temperature increases.
Furthermore, the sign of (∂2Vϕ0 /∂T2)P for all the ILs except
for [OMIm]Br is negative, showing that these ILs behave as
structure maker in aqueous media.
AUTHOR INFORMATION
Corresponding Author
*Tel.: +98 41 33393139. Fax: +98 41 33340191. E-mail:
■
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) Guo, W. J.; Hou, Y. C.; Wu, W. Z.; Tian, S. D.; Marsh, K. N.
Separation of Phenol From Model Oils With Quaternary Ammonium
Salts via Forming Deep Eutectic Solvents. Green Chem. 2013, 15, 226−
229.
(2) Kurane, R.; Jadhav, J.; Khanapure, S.; Salunkhe, R.; Rashinkar, G.
Synergistic Catalysis by an Aerogel Supported Ionic Liquid Phase
(ASILP) in the Synthesis of 1,5 Benzodiazepines. Green Chem. 2013,
15, 1849−1856.
(3) Plechkova, N. V.; Seddon, K. R. Applications of Ionic Liquids in
the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123−150.
(4) Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical
and Biochemical Transformations in Ionic Liquids. Tetrahedron 2005,
61, 1015−1060.
(5) Gutowski, K. E.; Broker, G. A.; Willauer, H. D.; Huddleston, J.
G.; Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Controlling the
Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of
Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle,
Metathesis, and Separations. J. Am. Chem. Soc. 2003, 125, 6632−6633.
(6) Berthod, A.; Ruiz-Angel, M.; Carda-Broch, S. Ionic Liquids in
Separation Techniques. J. Chromatogr., A 2008, 1184, 6−18.
(7) Han, X.; Armstrong, D. W. Ionic Liquids in Separations. Acc.
Chem. Res. 2007, 40, 1079−1086.
(8) Hanke, C. G.; Lynden-Bell, R. M. A Simulation Study of Water−
Dialkylimidazolium Ionic Liquid Mixtures. J. Phys. Chem. B 2003, 107,
10873−10878.
(9) Del Popolo, M. G.; Mullan, C. L.; Holbrey, J. D.; Hardacre, C.;
Ballone, P. Ion Association in [bmim][PF6]/Naphthalene Mixtures:
An Experimental and Computational Study. J. Am. Chem. Soc. 2008,
130, 7032−7041.
(10) Leskiv, M.; Bernardes, C. E. S.; da Piedade, M. E. M.; Lopes, J.
N. C. Energetics of Aqueous Solutions of the Ionic Liquid 1-Ethyl-3-
methylimidazolium Ethylsulfate. J. Phys. Chem. B 2010, 114, 13179−
13188.
(11) Zhu, X.; Zhang, H.; Li, H. The Structure of Water in Dilute
Aqueous Solutions of Ionic Liquids: IR and NMR Study. J. Mol. Liq.
2014, 197, 48−51.
(12) (a) Ananthaswamy, J.; Atkinson, G. Thermodynamics of
Concentrated Electrolyte Mixtures. 4. Pitzer−Debye−Hueckel Limit-
̈
ing Slopes for Water From 0 to 100 °C and From 1 atm to 1 kbar. J.
Chem. Eng. Data 1984, 29, 81−87. (b) Zafarani-Moattar, M. T.;
F
J. Chem. Eng. Data XXXX, XXX, XXX−XXX