Journal of Chemical & Engineering Data
Article
Notes
(19) Ebrahimi, N.; Sadeghi, R. Osmotic Properties of Carbohydrate
The authors declare no competing financial interest.
Aqueous Solutions. Fluid Phase Equilib. 2016, 417, 171−180.
(20) Shekaari, H.; Zafarani-Moattar, M. T. Osmotic Coefficients of
Some Imidazolium Based Ionic Liquids in Water and Acetonitrile at
REFERENCES
■
Temperature 318.15 K. Fluid Phase Equilib. 2007, 254 (1), 198−203.
(
3
1) Albertsson, P. A. Partitioning of Cell Particles and Macromolecules,
rd ed.; Wiley Interscience: New York, 1986.
(21) Shekaari, H.; Mousavi, S. S. Measurement and Modeling of
Osmotic Coefficients of Aqueous Solution of Ionic Liquids Using
Vapor Pressure Osmometry Method. Fluid Phase Equilib. 2009, 279
(
2) Sadeghi, R.; Golabiazar, R.; Shekaari, H. The Salting-out Effect
and Phase Separation in Aqueous Solutions of Tri-Sodium Citrate and
-Butyl-3-Methylimidazolium Bromide. J. Chem. Thermodyn. 2010, 42
4), 441−453.
3) Moradian, T.; Sadeghi, R. Isopiestic Investigations of the
Interactions of Water-Soluble Polymers with Imidazolium-Based
Ionic Liquids in Aqueous Solutions. J. Phys. Chem. B 2013, 117
25), 7710−7717.
4) Sadeghi, R.; Jamehbozorg, B. The Salting-out Effect and Phase
Separation in Aqueous Solutions of Sodium Phosphate Salts and Poly
propylene Glycol). Fluid Phase Equilib. 2009, 280 (1), 68−75.
5) Sadeghi, R.; Hamidi, B.; Ebrahimi, N. Investigation of Amino
Acid−Polymer Aqueous Biphasic Systems. J. Phys. Chem. B 2014, 118
34), 10285−10296.
6) Sadeghi, R.; Ebrahimi, N.; Tehrani, M. D. Investigation of
Carbohydrates as Non-Charged, Non-Toxic and Renewable Soluting-
out Agent for Polymer Based Aqueous Biphasic Systems Implementa-
tion. Polymer 2016, 98, 365−377.
7) Noshadi, S.; Sadeghi, R. Evaluation of the Capability of Ionic
Liquid−Amino Acid Aqueous Systems for the Formation of Aqueous
Biphasic Systems and Their Applications in Extraction. J. Phys. Chem. B
017, 121 (12), 2650−2664.
8) Wu, W.-C.; Ng, H. S.; Sun, I.-M.; Lan, J. C.-W. Single Step
Purification of Bromelain from Ananas Comosus Pulp Using a
Polymer/salt Aqueous Biphasic System. J. Taiwan Inst. Chem. Eng.
017, 79, 158.
(
1), 73−79.
1
(
(
(
22) Ashassi-Sorkhabi, H.; Kazempour, A. Thermodynamic Study of
Aqueous Solutions of 1-Butyl-3-Methylimidazolium Tetrafluoroborate
Ionic Liquid Using Potentiometric Measurements at Different
Temperatures. J. Chem. Eng. Data 2016, 61 (10), 3542−3547.
(23) Gaba, R.; Pal, A.; Sharma, D.; Kaur, J. Solvation Behavior of
(
Glycine and Glycyl Dipeptide in Aqueous 1-Butyl-3-Methylimidazo-
lium Bromide Ionic Liquid Solutions at Different Temperatures. J. Mol.
Liq. 2017, 233, 38−44.
(
(
(24) Fu, D.; Wang, H.; Du, L. Experiments and Model for the Surface
(
Tension of (MDEA+ [Bmim][BF ]) and (MDEA+ [Bmim][Br])
4
(
Aqueous Solutions. J. Chem. Thermodyn. 2014, 71, 1−5.
(25) Liu, W.; Zhao, T.; Zhang, Y.; Wang, H.; Yu, M. The Physical
(
Properties of Aqueous Solutions of the Ionic Liquid [BMIM][BF ]. J.
4
Solution Chem. 2006, 35 (10), 1337−1346.
(26) Zafarani-Moattar, M. T.; Shekaari, H.; Agha, E. M. H. Effect of
Ionic Liquids, 1-Butyl-3-Methyl Imidazolium Bromide and 1-Hexyl-3-
Methyl Imidazolium Bromide on the vapour−Liquid Equilibria of the
Aqueous D-Fructose Solutions at 298.15 K and Atmospheric Pressure
Using Isopiestic Method. J. Chem. Thermodyn. 2017, 105, 142−150.
(27) Zafarani-Moattar, M. T.; Shekaari, H.; Agha, E. M. H. Vapor−
Liquid Equilibria Study of the Ternary Systems Containing Sucrose in
Aqueous Solutions of Ionic Liquids, 1-Butyl-3-Methyl Imidazolium
Bromide and 1-Hexyl-3-Methyl Imidazolium Bromide at 298.15 K and
Atmospheric Pressure. Fluid Phase Equilib. 2016, 429, 45−54.
(
2
(
2
(
9) Salabat, A.; Sadeghi, R.; Moghadam, S. T.; Jamehbozorg, B.
Partitioning of L-Methionine in Aqueous Two-Phase Systems
Containing Poly (propylene Glycol) and Sodium Phosphate Salts. J.
Chem. Thermodyn. 2011, 43 (10), 1525−1529.
(
28) Zafarani-Moattar, M. T.; Shekaari, H.; Agha, E. M. H.
Thermodynamic Studies on the Phase Equilibria of Ternary {ionic
Liquid, 1-Hexyl-3-Methyl Imidazolium Chloride+ D-Fructose or
Sucrose+ Water} Systems at 298.15 K. Fluid Phase Equilib. 2017,
(
10) Gutowski, K. E.; Broker, G. A.; Willauer, H. D.; Huddleston, J.
G.; Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D. Controlling the
Aqueous Miscibility of Ionic Liquids: Aqueous Biphasic Systems of
Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle,
Metathesis, and Separations. J. Am. Chem. Soc. 2003, 125 (22), 6632−
633.
11) Zhang, Y.; Zhang, S.; Chen, Y.; Zhang, J. Aqueous Biphasic
Systems Composed of Ionic Liquid and Fructose. Fluid Phase Equilib.
007, 257 (2), 173−176.
12) Wu, B.; Zhang, Y.; Wang, H. Phase Behavior for Ternary
Systems Composed of Ionic Liquid+ Saccharides+ Water. J. Phys.
Chem. B 2008, 112 (20), 6426−6429.
13) Freire, M. G.; Louros, C. L. S.; Rebelo, L. P. N.; Coutinho, J. A.
P. Aqueous Biphasic Systems Composed of a Water-Stable Ionic
Liquid+ Carbohydrates and Their Applications. Green Chem. 2011, 13
4
(
36, 38−46.
29) Chen, Y.; Wang, Y.; Cheng, Q.; Liu, X.; Zhang, S.
Carbohydrates-Tailored Phase Tunable Systems Composed of Ionic
Liquids and Water. J. Chem. Thermodyn. 2009, 41 (9), 1056−1059.
6
(
(30) Jamehbozorg, B.; Sadeghi, R. Thermodynamic Study of the
Soluting Effect in Aqueous Ionic Liquid-Monosaccharide Solutions by
the Vapor Pressure Osmometry. J. Mol. Liq. 2017, 248, 205−213.
2
(
(31) Jamehbozorg, B.; Sadeghi, R. Evaluation of the Effect of
Carbohydrates as Renewable, None-Charged and Non-Toxic Soluting-
Out Agents on the Ionic-Liquid-Based ABS Implementation and their
Applications in Green Extraction Processes (submitted).
(
(32) Jamehbozorg, B.; Sadeghi, R. . Evaluation of the Effect of Ionic-
Liquids as Soluting-Out Agents on the Solubility of Carbohydrates in
Aqueous Solutions. Fluid Phase Equilib. 2018, 459, 73−84.
(
6), 1536−1545.
14) Sadeghi, R.; Jahani, F. Salting-in and Salting-out of Water-
Soluble Polymers in Aqueous Salt Solutions. J. Phys. Chem. B 2012,
16 (17), 5234−5241.
15) Sadeghi, R.; Mostafa, B.; Parsi, E.; Shahebrahimi, Y. Toward an
(33) Cammarata, L.; Kazarian, S. G.; Salterb, P. A.; Weltonb, T.
(
Molecular states of water in room temperature ionic liquidsy. Phys.
Chem. Chem. Phys. 2001, 3, 5192−5200.
1
(
(34) Robinson, R. A.; Stokes, R. H. Electrolyte Solutions; Butter-
worths: London. 1965.
35) Clarke, E. C. W.; Glew, D. N. Evaluation of the Thermodynamic
Understanding of the Salting-Out Effects in Aqueous Ionic Liquid
Solutions: Vapor− Liquid Equilibria, Liquid− Liquid Equilibria,
Volumetric, Compressibility, and Conductivity Behavior. J. Phys.
Chem. B 2010, 114 (49), 16528−16541.
(
Functions for Aqueous Sodium Chloride from Equilibrium and
Calorimetric Measurements below 154 C. J. Phys. Chem. Ref. Data
1
(
985, 14 (2), 489−610.
(
16) Catalan
Publishing: Toronto, ON, 2001; p 583.
17) Peres, A. M.; Macedo, E. A. Thermodynamic Properties of
́
, J. Handbook of Solvents; Wypych, G., Ed.; ChemTech
36) Saul, A.; Wagner, W. International Equations for the Saturation
(
Properties of Ordinary Water Substance. J. Phys. Chem. Ref. Data 1987,
16 (4), 893−901.
(37) Maali, M.; Sadeghi, R. Vapour Pressure Osmometry
Determination of Water Activity of Binary and Ternary Aqueous
(polymer+ Polymer). J. Chem. Thermodyn. 2015, 84, 41−49.
(38) Sadeghi, R. ABS Composed of Ionic Liquids and Polymers. In
Ionic-Liquid-Based Aqueous Biphasic Systems; Springer, 2016; pp 61−88.
Sugars in Aqueous Solutions: Correlation and Prediction Using a
Modified UNIQUAC Model. Fluid Phase Equilib. 1996, 123 (1−2),
7
(
1−95.
18) Ferreira, O.; Brignole, E. A.; Macedo, E. A. Phase Equilibria in
Sugar Solutions Using the A-UNIFAC Model. Ind. Eng. Chem. Res.
003, 42 (24), 6212−6222.
2
I
J. Chem. Eng. Data XXXX, XXX, XXX−XXX