3524
T. Shono et al. / Tetrahedron Letters 48 (2007) 3521–3524
R2
2. (a) Shook, C. A.; Romberger, M. L.; Jung, S.-H.; Xiao,
1
(2 equiv)
Cp TiCl2
2
M.; Sherbine, J. P.; Zhang, B.; Lin, F.-T.; Cohen, T. J.
Am. Chem. Soc. 1993, 115, 10754; (b) Nakamura, E.;
Yamago, S. Acc. Chem. Res. 2002, 35, 867; (c) Fujita, M.;
Fujiwara, K.; Okuyama, T. Chem. Lett. 2006, 35, 382; (d)
Fujita, M.; Oshima, M.; Okuno, S.; Sugimura, T.;
Okuyama, T. Org. Lett. 2006, 8, 4113.
3
-
R3
2
Cp Ti
2
7
R2
4
3. (a) Thiemann, T.; Ohira, D.; Li, Y.; Sawada, T.; Mataka,
S.; Rauch, K.; Noltemeyer, M.; de Meijere, A. J. Chem.
Soc., Perkin Trans. 1 2000, 2968; (b) de Meijere, A.;
Leonov, A.; Heiner, T.; Noltemeyer, M.; Bes, M. T. Eur.
J. Org. Chem. 2003, 472.
Cp Ti
2
R3
O
- Cp Ti=O
2
X
R1
8
Scheme 3.
4
. Nakamura, I.; Nemoto, T.; Yamamoto, Y.; de Meijere, A.
Angew. Chem., Int. Ed. 2006, 45, 5176.
5
. (a) F u¨ rstner, A.; A ¨ı ssa, C. J. Am. Chem. Soc. 2006, 128,
6306; (b) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc.
the cyclobutylidenation of a wide variety of carbonyl
compounds.
1
6
2
006, 128, 7430.
6
. (a) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589; (b)
Satoh, T.; Saito, S. Tetrahedron Lett. 2004, 45, 347; (c)
Nordvik, T.; Mieusset, J.-L.; Brinker, U. H. Org. Lett.
2004, 6, 715; (d) Simaan, S.; Masarwa, A.; Bertus, P.;
Marek, I. Angew. Chem., Int. Ed. 2006, 45, 3963; (e) Xu,
L.; Huang, X.; Zhong, F. Org. Lett. 2006, 8, 5061.
. (a) Schweizer, E. E.; Berninger, C. J.; Thompson, J. G. J.
Org. Chem. 1968, 33, 336; (b) Okuma, K.; Ikari, K.; Ono,
M.; Sato, Y.; Kuge, S.; Ohta, H.; Machiguchi, T. Bull.
Chem. Soc. Jpn. 1995, 68, 2313.
This olefination is also applicable to carboxylic acid
derivatives. Alkylidenecyclopropanes 4 bearing an enol
ether substructure were obtained by the reaction of 3
with esters (Table 2, entries 1–5). The reactions of for-
mic ester 2k and lactone 2l also gave the corresponding
enol ethers 4 (entries 6 and 7). Since these enol ethers are
readily hydrolyzed under the work-up and purification
conditions described above, the special care should be
7
1
7
taken to isolate them in pure forms.
8
. Lewis, R. T.; Motherwell, W. B. Tetrahedron Lett. 1988,
2
9, 5033.
As in the cases of the olefination using gem-dichlorides
previously reported, the olefination with 1,1-dichloro-
cyclopropanes 3 is assumed to proceed via the formation
of titanium cyclopropylidene complexes 7 generated by
the reductive titanation of 3 with 1 (Scheme 3). The sub-
sequent reaction of carbene complexes 7 with carbonyl
compounds 2 affords oxatitanacyclobutanes 8, which
give alkylidenecyclopropanes 4 through the expulsion
of titanocene oxide.
9
. (a) Cohen, T.; Sherbine, J. P.; Matz, J. R.; Hutchins, R.
R.; McHenry, B. M.; Willey, P. R. J. Am. Chem. Soc.
1984, 106, 3245; (b) Cohen, T.; Jung, S.-H.; Romberger,
M. L.; McCullough, D. W. Tetrahedron Lett. 1988, 29,
25.
1
1
1
1
0. Bernard, A. M.; Frongia, A.; Piras, P. P.; Secci, F. Synlett
004, 1064.
1. Petasis, N. A.; Bzowej, E. I. Tetrahedron Lett. 1993, 34,
43.
2. Takeda, T.; Sasaki, R.; Fujiwara, T. J. Org. Chem. 1998,
3, 7286.
2
9
6
In conclusion, we have developed the first practical pro-
cedure for the preparation of alkylidenecyclopropanes
bearing various substituents on their cyclopropane ring
utilizing readily available 1,1-dichlorocyclopropanes
and titanocene(II) reagent 1. This procedure is applica-
ble to the cyclopropylidenation of highly enolizable
ketones and carboxylic acid derivatives.
3. Takeda, T.; Endo, Y.; Reddy, A. C. S.; Sasaki, R.;
Fujiwara, T. Tetrahedron 1999, 55, 2475.
14. Shono, T.; Ito, K.; Tsubouchi, A.; Takeda, T. Org.
Biomol. Chem. 2005, 3, 2914.
15. (a) Makosza, M.; Wawrzyniewicz, M. Tetrahedron Lett.
1
969, 10, 4659; (b) Joshi, G. C.; Singh, N.; Pande, L. M.
Tetrahedron Lett. 1972, 13, 1461; (c) Juli a´ , S.; Ginebreda,
A. Synthesis 1977, 682.
1
6. Fujiwara, T.; Iwasaki, N.; Takeda, T. Chem. Lett. 1998,
741.
Acknowledgments
1
7. The typical procedure for the cyclopropylidenation of
carbocylic acid derivatives is as follows: To a THF (3 mL)
solution of titanocene(II) reagent 1, prepared from
This work was supported by Grant-in-Aid for Scientific
Research (No. 18350018) and Grant-in-Aid for Scien-
tific Research on Priority Areas ‘Advanced Molecular
Transformations of Carbon Resources’ (No. 18037017)
from the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan. This work was also carried
out under the 21st Century COE program of ‘Future
Nanomaterials’ in Tokyo University of Agriculture
and Technology.
magnesium turnings (38 mg, 1.6 mmol), Cp
2 2
TiCl
(
374 mg, 1.5 mmol), and P(OEt)3 (0.5 mL, 2.9 mmol) in
˚
the presence of molecular sieves 4 A (150 mg), was added
a THF (1 mL) solution of 3a (99 mg, 0.6 mmol) at 25 ꢁC.
After stirring for 10 min, a THF (1 mL) solution of 2h
(
49 mg, 0.3 mmol) was added to the reaction mixture,
which was then refluxed for 2 h. After cooling, triethyl-
amine (0.3 mL) was added and the reaction mixture was
diluted with hexane (20 mL). The insoluble materials were
filtered off through Celite and washed with hexane
References and notes
(
K
10 mL). The combined hexane solutions were dried over
CO . After removal of the solvent under reduced
2
3
1
. (a) Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002,
44, 111; (b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti,
A. Chem. Rev. 2003, 103, 1213.
pressure, the residue was chromatographed over alumina
gel (eluted with 0.5% triethylamine in hexane) to give 4k
(48 mg, 66%).
3