ˇ
´
´
´
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 253 (2021) 119576
I.N. Stojiljkovic, M.P. Rancic, A.D. Marinkovic et al.
[8] D. Thetford, A.P. Chorlton, J. Hardman, Synthesis and properties of some
polycyclic barbiturate pigments, Dye. Pigment. 59 (2003) 185–191, https://doi.
[35] M.L. Deb, P.J. Bhuyan, Uncatalysed Knoevenagel condensation in aqueous
medium at room temperature, Tetrahedron Lett. 46 (2005) 6453–6456,
[9] K. Kondo, S. Ochiai, K. Takemoto, M. Irie, Nonlinear optical properties of p-
substituted benzalbarbituric acids, Appl. Phys. Lett. 56 (1990) 718, https://doi.
[36] B.S. Jursic, A simple method for knoevenagel condensation of a, b-conjugated
and aromatic aldehydes with barbituric acid, J. Heterocycl. Chem. 38 (2001)
[37] M.J. Kamlet, J.L.M. Abboud, M.H. Abraham, R.W. Taft, Linear solvation energy
relationships. 23.
A comprehensive collection of the solvatochromic
[11] G.S. He, L.S. Tan, Q. Zheng, P.N. Prasad, Multiphoton absorbing materials:
molecular designs, characterizations, and applications, Chem. Rev. 108 (2008)
parameters,pi.*,alpha., and.beta., and some methods for simplifying the
generalized solvatochromic equation, J. Org. Chem. 48 (1983) 2877–2887,
[12] Y. Kawabe, H. Ikeda, T. Sakai, K. Kawasaki, Second-order non-linear optical
properties of new organic conjugated molecules, J. Mater. Chem. 2 (1992)
[38] Y. Marcus, The properties of organic liquids that are relevant to their use as
[13] S.R. Marder, J.W. Perry, Molecular materials for second-order nonlinear optical
applications, Adv. Mater.
5
[40] A. Williams, Free energy relationships in organic and bio-organic chemistry,
[41] D. Cremer, Møller-Plesset perturbation theory: from small molecule methods
to methods for thousands of atoms, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1
[14] J. Podlesny´, O. Pytela, M. Klikar, V. Jelínková, I.V. Kityk, K. Ozga, J. Jedryka, M.
Rudysh, F. Bureš, Small isomeric push-pull chromophores based on
thienothiophenes with tunable optical (non)linearities, Org. Biomol. Chem.
[15] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar
[16] Y. Wu, W. Zhu, Organic sensitizers from D–p–A to D-A–p–A: effect of the
[42] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange,
[43] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron density, Phys. Rev. B. 37 (1988) 785–
[44] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian, Inc., Wallingford
CT, Gaussian 09, 2009.
[45] I. Mayer, Charge, bond order and valence in the AB initio SCF theory, Chem.
[46] Z. Liu, T. Lu, Q. Chen, An sp-hybridized all-carboatomic ring, cyclo[18]carbon:
electronic structure, electronic spectrum, and optical nonlinearity, Carbon N.
[47] F. Zuccarello, G. Buemi, C. Gandolfo, A. Contino, Barbituric and thiobarbituric
acids: a conformational and spectroscopic study, Spectrochim Acta Part A Mol.
[48] W. Bolton, The crystal structure of anhydrous barbituric acid, Acta Crystallogr.
[49] G.A. Jeffrey, S. Ghose, J.O. Warwicker, The crystal structure of barbituric acid
[50] A. Barakat, H.J. Al-Najjar, A.M. Al-Majid, S.M. Soliman, Y.N. Mabkhot, M.R.
Shaik, H.A. Ghabbour, H.-K. Fun, Synthesis, NMR, FT-IR, X-ray structural
characterization, DFT analysis and isomerism aspects of 5-(2,6-
dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione, Spectrochim Acta
internal electron-withdrawing units on molecular absorption{,} energy levels
and photovoltaic performances, Chem. Soc. Rev. 42 (2013) 2039–2058, https://
[17] Y. Ohmori, Development of organic light-emitting diodes for electro-optical
integrated devices, Laser Photon. Rev.
[18] Y.H. Kim, H. Kim, H.J. Kim, Synthesis and pH-sensing properties of a push-pull
conjugated fluorophore based on dicyanomethylene-1,4-dihydropyridine,
[19] I. Bolz, M. Bauer, A. Rollberg, S. Spange, Chromophoric barbituric acid
derivatives with adjustable hydrogen-bonding patterns as component for
[20] H. Ikeda, Y. Kawabe, T. Sakai, K. Kawasaki, Second order hyperpolarizabilities
of barbituric acid derivatives, Chem. Lett. 18 (1989) 1803–1806, https://doi.
[21] F. Bureš, Fundamental aspects of property tuning in push-pull molecules, RSC
[22] T. Le Bahers, C. Adamo, I. Ciofini, A qualitative index of spatial extent in charge-
transfer excitations, J. Chem. Theory Comput. 7 (n.d.) 2498–2506. https://doi.
[23] D. Jacquemin, T. Le Bahers, C. Adamo, I. Ciofini, What is the ‘‘best” atomic
charge model to describe through-space charge-transfer excitations?, Phys
[24] I. Ciofini, T. Le Bahers, C. Adamo, F. Odobel, D. Jacquemin, Through-space
charge transfer in rod-like molecules: lessons from theory, J. Phys. Chem. C.
[51] M.C. Rezende, M. Dominguez, J.L. Wardell, J.M.S. Skakle, J.N. Low, C. Glidewell,
Supramolecular
structures
of
five
5-(arylmethylene)-1,3-dimethyl-
[25] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput.
[26] N. Klonis, N.H. Quazi, L.W. Deady, A.B. Hughes, L. Tilley, Characterization of a
series of far-red-absorbing thiobarbituric acid oxonol derivatives as
fluorescent probes for biological applications, Anal. Biochem. 317 (2003) 47–
pyrimidine-2,4,6(1H,3H,5H)-triones: Isolated molecules, hydrogen-bonded
chains and chains of fused hydrogen-bonded rings, Acta Crystallogr. Sect. C
[52] C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, The Cambridge structural
ˇ ˇ
[27] M. Klikar, V. Jelínková, Z. Ru˚ zicková, T. Mikysek, O. Pytela, M. Ludwig, F. Bureš,
Malonic acid derivatives on duty as electron-withdrawing units in push-pull
[53] J.C. Cochran, K. Hagen, G. Paulen, Q. Shen, S. Tom, M. Traetteberg, C. Wells, On
the planarity of styrene and its derivatives: the molecular structures of styrene
and (Z)-Î2-bromostyrene as determined by ab initio calculations and gas-phase
[54] J.C. Sancho-García, A.J. Pérez-Jiménez, A theoretical study of the molecular
structure and torsional potential of styrene, J. Phys. B At. Mol. Opt. Phys. 35
[55] C.H. Choi, M. Kertesz, Conformational information from vibrational spectra of
styrene, trans-Stilbene, and cis-Stilbene, J. Phys. Chem. A. 101 (1997) 3823–
ˇ
[28] M. Klikar, F. Bureš, O. Pytela, T. Mikysek, Z. Padelková, A. Barsella, K. Dorkenoo,
S. Achelle, N, N0-Dibutylbarbituric acid as an acceptor moiety in push-pull
[29] A.C. Benniston, A. Harriman, K.S. Gulliya, Photophysical properties of
merocyanine 540 derivatives, J. Chem. Soc. Faraday Trans. 90 (1994) 953–
[30] S.-H. Kim, Y.-S. Kim, D.-H. Lee, Y.-A. Son, Synthesis and optical chromic
properties of new barbituric acid based dye molecules having push-
p
-pull
[56] A. Karpfen, C.H. Choi, M. Kertesz, Single-bond torsional potentials in
conjugated systems: a comparison of ab initio and density functional results,
[57] T.A. Ganina, D.A. Cheshkov, V.A. Chertkov, Dynamic structure of organic
compounds in solution according to NMR data and quantum chemical
calculations: II. Styrene, Russ. J. Org. Chem. 53 (n.d.) 12–23. https://doi.org/
[31] I. Bolz, C. May, S. Spange, Solvatochromic properties of Schiff bases derived
from 5-aminobarbituric acid: chromophores with hydrogen bonding patterns
as components for coupled structures, New J. Chem. 31 (2007) 1568–1571,
ˇ ´
´
ˇ ´
´
[33] I. Bolz, C. Moon, V. Enkelmann, G. Brunklaus, S. Spange, Probing molecular
recognition in the solid-state by use of an enolizable chromophoric barbituric
[34] M. Bauer, A. Rollberg, A. Barth, S. Spange, Differentiating between dipolarity
and polarizability effects of solvents using the solvatochromism of barbiturate
[58] M.P. Rancic, N.P. Trišovic, M.K. Milcic, I.A. Ajaj, A.D. Marinkovic, Experimental
and theoretical study of substituent effect on 13C NMR chemical shifts of 5-
arylidene-2,4-thiazolidinediones, J. Mol. Struct. 1049 (2013) 59–68, https://
ˇ ´
´
´
´
´
[59] M.P. Rancic, I. Stojiljkovic, M. Miloševic, N. Prlainovic, M. Jovanovic, M.K.
ˇ ´
Milcic, A.D. Marinkovic, Solvent and substituent effect on intramolecular
charge transfer in 5-arylidene-3-substituted-2,4-thiazolidinediones:
Experimental and theoretical study, Arab. J. Chem. 12 (2019) 5142–5161,
´
11