S. V. Krasnikov et al. / Tetrahedron Letters 45 (2004) 711–714
713
8
recent work. Specifically, it was shown that in the first
7. Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry,
nd ed.; Chemie: Weinheim, NY, 1993; Chapter 14.
2
stages of oxidation, an ionic interaction occurs between
the catalyst and the initial toluene derivative. The
proposed mechanism of oxidation with TM ions in
acetic acid is in full agreement with our experimental
data. Thus upon oxidation of 4-(1-adamantyl)toluene 4
in the presence of a cobalt–manganese bromide catalyst
with the addition of manganese acetate, 4-(1-adaman-
tyl)benzoic acid 5 was obtained via formation of a
radical at the methyl group, in high yield. In the
proposed mechanism, the C–H bonds of the adaman-
tane moiety do not participate in the radical pathway
although they can be easily oxidized by many other
oxidizing agents.
8
. (a) Obuchova, T. A.; Kluev, I. V.; Krasnikov, S. V.;
Betnev, A. F. RU Patent 2183620, 2002; Der. Abstr.
C2002-581461; (b) Betnev, A. F.; Obuchova, T. A.; Kluev,
I. V.; Krasnikov, S. V. Izv. Vuzov. Khim. Techn. (Proc.
Inst. Higher Edu.: Chem. Technol.) 2000, 43, 73–75.
9
. 4-(1-Adamantyl)benzoic acid 5: white crystals with mp
1
3
08–310 °C; H NMR (CDCl
3
, 400 MHz): d 1.78 (m, 6H),
1.92 (m, 6H), 2.12 (m, 3H), 7.38 (d, 2H, J ¼ 7.8 Hz), 7.88
(d, 2H, J ¼ 7.8 Hz), 12.30 (s, 1H); R 0.66 (toluene/
f
petroleum ether/acetone/acetic acid, 16:16:10:1). Anal.
Calcd for C17
20 2
H O : C, 79.7; H, 7.8; O, 12.5. Found: C,
7
9.5; H, 7.7; O, 12.6.
1
1
0. 4-(1-Adamantyl)benzoic acid chloride 6 was quantitatively
obtained from acid 5 by reaction with thionyl chloride in
benzene and was used in the next step without purification.
1. Satisfactory analytical data ( H NMR, mass spectra,
elementary analysis) were obtained for all new com-
In summary, cobalt–manganese bromide with addition
of manganese acetate in acetic acid is a mild and efficient
system for the selective catalytic oxidation of substituted
1
pounds. For example: (2S)-[4-(1-adamantyl)phenylcarb-
1
18
toluenes. Using this approach, we developed an effi-
cient synthetic route to 4-(1-adamantyl)benzoic acid 5.
A series of 4-(1-adamantyl)benzoylated amino acids
were then prepared with 60–80% overall yields starting
from 4-(1-adamantyl)toluene 4. Biological evaluation
of compounds 7–15 is currently in progress and will
be reported elsewhere.
oxamido]-3-methylbutanoic acid 8: mp 215–218 °C;
H
NMR [DMSO-d +CCl (1:3), 500 MHz]: d ¼ 1.00 (d, 6H,
6
4
J ¼ 6.0 Hz), 1.78 (m, 6H), 1.92 (m, 6H), 2.12 (m, 3H), 2.22
(
m, 1H), 4.40 (dd, 1H, J ¼ 6.7, 6.4 Hz), 7.37 (d, 2H,
J ¼ 7.8 Hz), 7.74 (m, 1H), 7.80 (d, 2H, J ¼ 7.8 Hz); EIMS:
þ
m=z 355 (9%) [M] ; R
f
0.36 (toluene/petroleum ether/
acetone/acetic acid, 16:16:10:1). Anal. Calcd for
: C, 74.3; H, 8.2; N, 3.9; O, 13.6. Found: C,
4.4; H, 8.0; N, 4.1; O, 13.3. (2S,R)-[4-(1-Adamantyl)phe-
nylcarboxamido]-3-phenylpropanoic acid 9: mp 108–
22 3
C H29NO
7
1
1
1
10 °C; H NMR [DMSO-d
.78 (m, 6H), 1.93 (m, 6H), 2.12 (m, 3H), 3.10 (dd, 1H,
6 4
+CCl (1:3), 500 MHz]: d
3
. Experimental protocol for the oxidation of
-(1-adamantyl)toluene
4
J ¼ 14.8, 10.0 Hz), 3.20 (dd, 1H, J ¼ 14.8, 4.6 Hz), 4.65 (m,
H), 7.15 (m, 1H), 7.23 (m, 2H), 7.28 (m, 2H), 7.36 (d, 2H,
1
A mixture of cobalt acetate (0.525 g, 2.11 mmol), man-
ganese acetate (0.059 g, 0.24 mmol), sodium bromide
J ¼ 7.8 Hz), 7.73 (d, 2H, J ¼ 7.8 Hz), 8.12 (m, 1H); EIMS:
þ
m=z 403 (6%) [M] ; R 0.39 (toluene/petroleum ether/
f
(
4
1
0.24 g, 2.33 mmol), and 4-(1-adamantyl)toluene (10.71 g,
7.4 mmol) in 95% aqueous acetic acid (200 mL) and
,4-dioxane (20 mL) were stirred in a three-necked
acetone/acetic acid, 16:16:10:1). Anal. Calcd for
: C, 77.3; H, 7.2; N, 3.5; O, 12.0. Found: C,
C
26
H29NO
3
7
7.0; H, 7.2; N, 3.3; O, 12.1.
1
1
2. Steiger, R. J. Org. Chem. 1944, 92, 396.
3. Coxon, J. M.; Cambridge, J. R. A.; Nam, S. G. C. Org.
Lett. 2001, 3, 4225–4227.
4. Emanuel, N. M.; Denisov, E. T.; Maizus, S. K. Chain
Oxidation Reactions of Hydrocarbons in Liquid Phase;
Nauka: Moscow, 1965; p 375.
round-bottomed flask equipped with an oxygen bubbler,
a backflow condenser, a magnetic stirrer, and a ther-
mometer. Oxygen was introduced and the mixture was
allowed to react for 2 h at a temperature of 90 °C. Then
the reaction mixture was concentrated by evaporating
1
1
50 mL of solvent. Cooled water (100 mL) was added to
1
5. Obuchova, T. A.; Mironov, G. S. Izv. Vuzov. Khim. Techn.
(Proc. Inst. Higher Edu.: Chem. Technol.) 1991, 34, 3–
13.
the cooled reaction mixture, and the precipitated crys-
tals were filtered and dried to give 11.53 g (95%) of pure
4
-(1-adamantyl)benzoic acid.
16. Obuchova, T. A.; Basaeva, N. N.; Mironov, G. S.;
Kuznetsov, M. M.; Bondarenko, A. V. Petrochemistry
1
978, 28, 573–578.
1
7. (a) Dessau, R. H.; Shih, S.; Heiba, E. I. J. Am. Chem. Soc.
1970, 92, 412–413; (b) Todres, S. V. Ion Radicals in
Organic Synthesis; Khimiya: Moscow, 1986; p 275; (c)
Obuchova, T. A.; Rusakov, A. I.; Koshel, S. G.; Mironov,
G. S. Zh. Org. Khim. (J. Org. Chem.) 1992, 28, 756–759;
(d) Simkin, B. Y.; Sheikhet, I. I. Quantum-Chemical
and Statistical Theory of Solutions; Khimiya: Moscow,
1989; p 252.
References and notes
1
. Moody, T. W.; Jensen, R. T. J. Pharmacol. Exp. Ther.
001, 299, 1154–1160.
. Ru, Y.; Marquis, R. W.; Veber, D. F. U.S. Patent
,369,077, 2002; Chem. Abstr. 130(02)014263C.
. Salvadori, S.; Guerrini, R.; Balboni, G.; Bianchi, C.;
Bryant, S. D.; Cooper, P. S.; Lazarus, L. H. J. Med. Chem.
2
2
3
6
18. For other examples of catalytic aerobic oxidation of
substituted toluene derivatives, see: (a) Towla, P. H.;
Baldwin, R. H. Hydrocarbon Process. 1964, 43, 149–153;
(b) Tmenov, D. N.; Lisukho, T. V.; Shcherbina, F. F.
1
999, 42, 5010–5019.
4
5
6
. Lazarus, L. H.; Bryant, S. D.; Salvadori, S.; Attila, M.;
Jones, L. S. Trends Neurosci. 1996, 19, 31–35.
. Feinstein, A. I.; Fields, E. K. U.S. Patent 4,142,036, 1979;
Chem. Abstr. 090(26)204842U.
. Hudlicky, M Oxidations in Organic Chemistry. In ACS
Monograph 186; American Chemical Society: Washington
DC, 1990; p 106.
U.S.S.R. Patent 614090, 1978; Chem.
Abstr.
089(13)108705K; (c) Kharlampovich, G. L.; Borovkova,
G. G.; Khaybullin, U. G. Petrochemistry 1978, 18, 641–
646; (d) Vora, B. V. U.S. Patent 4,172,209, 1979; Chem.
Abstr. 092(11)094071Y; (e) Barton, D. H. R.; Doller, D.;