1818
I. Hemeon et al.
LETTER
Typical Procedure
References
[bmim]BF4 (2.0 mL) was heated under vacuum at 60 °C for 2 h in a
25 mL round bottom flask. ZnI2 (0.96 g, 3.0 mmol, weighed in
glove box into oven-dried vial) was added under a stream of N2 and
the mixture was heated under vacuum for a further 2 h. Methyl acry-
late (0.90 mL, 10.0 mmol) was injected after cooling and sealing the
flask with a septum. This stirred for 15 min in a r.t. water bath, after
which time freshly distilled furan (1.02 mL, 14.0 mmol) was inject-
ed. This was stirred for 48 h at r.t., after which time the reaction was
diluted with 100 mL EtOAc. This was washed with 0.1 M Na2S2O3
(1 50 mL) and water (1 50 mL), then dried (MgSO4), filtered,
and concentrated to a yellow oil. The crude product was purified via
flash chromatography using 10:1 hexanes:EtOAc, followed by a 2:1
mixture. The product was isolated as a yellow oil (0.665 g, 4.31
mmol, 67%). 1H NMR indicated an endo:exo ratio of 2:1. 1H NMR:
= 1.59 (dd, H3n endo, exo), 2.06–2.19 (m, 1 H, H3 endo, exo),
2.44 (q, H2 exo), 3.12 (quintet, H2 endo), 3.65 (s, CH3 endo), 3.76
(s, CH3 exo), 5.01–5.19 (m, 2 H, H1 endo, exo, H4 endo, exo), 6.34
(ddd, H5 endo, H6 endo), 6.39 (ddd, H5 exo, H6 exo); 13C NMR:
= 28.4, 28.9, 42.5, 51.6, 52.0, 77.8, 78.6, 78.9, 80.7, 132.4, 134.5,
136.9, 172.5, 174.1; MS (ES+): 154.1.
(1) Hutchinson, S. A.; Baker, S. P.; Scammells, P. J. Bioorg.
Med. Chem. Lett. 1999, 9, 933.
(2) Brion, F. Tetrahedron Lett. 1982, 23, 5299.
(3) Nelson, W. L.; Allen, D. R. J. Heterocycl. Chem. 1972, 9,
561.
(4) (a) Dauben, W. G.; Krabbenhoft, H. O. J. Am. Chem. Soc.
1976, 98, 1992. (b) Kotsuki, H.; Nishizawa, H.; Ochi, M.;
Matsuoka, K. Bull. Chem. Soc. Jpn. 1982, 55, 496.
(5) Narayana; Murthy, Y. V. S.; Pillai, C. N. Synth. Commun.
1991, 21, 783.
(6) (a) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000,
39, 3772. (b) Welton, T. Chem. Rev. 1999, 99, 2071.
(c) Holbrey, J. D.; Seddon, K. R. Clean Products and
Processes 1999, 1, 223.
(7) (a) Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green
Chem. 1999, 1, 23. (b) Fischer, T.; Sethi, T.; Welton, T.;
Woolf, J. Tetrahedron Lett. 1999, 40, 793. (c) Lee, C. W.
Tetrahedron Lett. 1999, 40, 2461. (d) Song, C. E.; Shim, W.
H.; Roh, E. J.; Lee, S.; Choi, J. H. Chem. Commun. 2001,
1122. (e) Zulfiqar, F.; Kitazume, T. Green Chem. 2000, 2,
137. (f) Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P.
Tetrahedron Lett. 1997, 38, 3097.
(8) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer,
H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3,
156.
(9) Moore, J. A.; Emmett, P. M. J. Org. Chem. 1983, 48, 1105.
(10) Lee, M. W.; Herndon, W. C. J. Org. Chem. 1978, 43, 518.
(11) Helder, R.; Wynberg, H. Tetrahedron Lett. 1972, 13, 605.
(12) Prinzbach, H.; Fuchs, R.; Kitzing, R. Angew. Chem., Int. Ed.
Engl. 1968, 7, 67.
Acknowledgement
We would like to acknowledge the Natural Sciences and Enginee-
ring Research Council of Canada (NSERC) and Saint Mary’s Uni-
versity (Senate Research) for funding this research. The Centre for
Chiral and Molecular Technologies at Deakin University, Geelong,
Australia is also thanked for their hospitality during the sabbatical
visit of R.D.S.
(13) It has been reported that mono Diels–Alder adducts of this
type undergo further Diels–Alder reaction with diene
remaining in the system, see: McCulloch, A. W.; Smith, D.
G.; McInnes, A. G. Can. J. Chem. 1973, 51, 4125.
(14) Acheson, R. M. J. Chem. Soc. 1961, 457.
Synlett 2002, No. 11, 1815–1818 ISSN 0936-5214 © Thieme Stuttgart · New York