1754 Journal of Chemical & Engineering Data, Vol. 53, No. 8, 2008
zolium bis[trifluoromethylsulfonyl]imide + thiophene + toluene
have been experimentally obtained at the temperature of 298.15
K and atmospheric pressure. Both systems are type II because
[C8mim][NTf2] is partially miscible with all other components.
Thiophene solubility in the [C8mim][NTf2] is high (94 %), and
[C8mim][NTf2] solubility in hydrocarbons is poor (values around
or below detection limits).
Due to the high selectivity values found for the system
with 2,2,4-trimethylpentane, separation of the sulfur com-
pound seems to be feasible, but low values of distribution
coefficients imply the use of large quantities of solvent.
Nonetheless, negligible vapor pressure of IL facilitates
solvent recovery without losses. However, low values of both
parameters found for toluene indicate that separation of
thiophene from toluene using the IL studied is not favorable
thermodynamically. The studies would have to focus on a
combined desulfurization and dearomatization.
Figure 6. Selectivity as a function of the mole fraction of solute in the
hydrocarbon-rich phase (x′2) for the system [C8mim][NTf2] (1) + C4H4S
(2) + C8H18 (3). b, exptl; -, NRTL; - - -, UNIQUAC model.
The experimental LLE data were correlated using NRTL and
UNIQUAC models. For both systems, the UNIQUAC model
gives the best results, NRTL being incapable of adequately
correlating the system with toluene.
Literature Cited
(1) Hai, M.; Mei, B. W.; Fu, Y. T. A new method for obtaining ultralow
sulfur diesel fuel via ultrasound assisted oxidative desulfurization. Fuel
2003, 82, 405–414.
(2) Schmitz, C.; Datsevitch, L.; Jess, A. Deep desulfurization of diesel
oil: kinetic studies and process-improvement by the use of a two-
phase reactor with pre-saturator. Chem. Eng. Sci. 2004, 59, 2821–
2829.
(3) Tailleur, R.; Galiasso, R. J.; Quenza, S.; Valencia, N. Catalyst for
ultra-low sulfur and aromatic diesel. Appl. Catal., A 2005, 282, 227–
235.
(4) Babich, I. V.; Moulijn, J. A. Science and technology of novel processes
for deep desulfurization of oil refinery streams: a review. Fuel 2003,
82, 607–631.
(5) Nie, Y.; Li, C.; Sun, A.; Meng, H.; Wang, Z. Extractive Desulfurization
of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids.
Energy Fuels 2006, 20, 2083–2087.
(6) Alonso, L.; Arce, A.; Francisco, M.; Rodr´ıguez, O.; Soto, A. Gasoline
Desulfurization using Extraction with [C8min][BF4] Ionic Liquid.
AIChE J. 2007, 53, 3108–3115.
Figure 7. Solute distribution ratio as a function of the mole fraction of
solute in the hydrocarbon-rich phase (x′2) for the [C8mim][NTf2] (1) +
C4H4S (2) + C7H8 (3) ternary system. b, exptl; -, NRTL; - - -, UNIQUAC
model.
(7) Holbrey, J. D.; Lo´pez-Martin, I.; Rothenberg, G.; Seddon, K. R.;
Silvero, G.; Zheng, X. Desulfurisation of oils using ionic liquids:
selection of cationic and anionic components to enhance extraction
efficiency. Green Chem. 2008, 10, 87–92.
(8) Alonso, L.; Arce, A.; Francisco, M.; Rodr´ıguez, O.; Soto, A.
Measurement and correlation of Liquid-Liquid Equilibria of two
imidazolium ionic liquids with thiophene and methylcyclohexane.
J. Chem. Eng. Data 2007, 52, 2409–2412.
(9) Alonso, L.; Arce, A.; Francisco, M.; Soto, A. (Liquid-Liquid) Equilibria
of C8mim][NTf2] ionic liquid with a sulfur-component and hydrocar-
bons. J. Chem. Thermodyn. 2008, 40, 265–270.
(10) Alonso, L.; Arce, A.; Francisco, M.; Soto, A. Phase behaviour of
1-methyl-3-octylimidazolium bis[trifluoromethylsulfonyl]imide with
thiophene and aliphatic hydrocarbons: The influence of n-alkane
chain length. Fluid Phase Equilib. 2008, 263, 176–181.
(11) Pa´dua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham,
W. A. Density and Viscosity Measurements of 2,2,4-Trimethylpentane
(Isooctane) from 198 to 348 K and up to 100 MPa. J. Chem. Eng.
Data 1996, 41, 1488–1494.
(12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic SolVents.
Physical Properties and Methods of Purification, 4th ed.; John Wiley
& Sons: New York, 1986.
(13) Papaiconomou, N.; Yakelis, N.; Salminen, J.; Bergman, R.; Prausnitz,
J. M. Synthesis and Properties of Seven Ionic Liquids Containing
1-Methyl-3-octylimidazolium or 1-Butyl-4-methylpyridinium Cations.
J. Chem. Eng. Data 2006, 51, 1389–1393.
Figure 8. Selectivity as a function of the mole fraction of solute in the
hydrocarbon-rich phase (x′2) for the system [C8mim][NTf2] (1) + C4H4S
(2) + C7H8 (3). b, exptl; -, NRTL; - - -, UNIQUAC model.
(14) Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe,
M. How Ionic Are Room-Temperature Ionic Liquids? An Indicator
of the Physicochemical Properties. J. Phys. Chem. B 2006, 110, 19593–
19600.
(15) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic
excess functions for liquid mixtures. AIChE J. 1968, 14, 135–144.
Conclusions
The liquid-liquid-phase equilibria for ternary systems 1-meth-
yl-3-octylimidazolium bis[trifluoromethylsulfonyl]imide +
thiophene + 2,2,4-trimethylpentane or 1-methyl-3-octylimida-