ChemBioChem
10.1002/cbic.201700209
COMMUNICATION
added Cu(I) and tetraazide 1. We washed the cells twice with a
In summary, click-based detection of cell proliferation is today
state-of-art technology. We show here that by using dendrimer-
type tetraazide (1) and dendrimer-type tetraalkyne (2) compounds
sandwich type detection assays can be established that yield
strongly improved signal intensities with low background giving
higher signal to noise ratios for imaging and high throughput
content assays. We expect that the so improved cell proliferation
assay will be able to detect either slowly or even single
proliferating cancer cells with unprecedented sensitivity.
0
1
.2 M acetate buffer pH 4.7 followed by two washing steps with
x PBS-T and performed subsequently the second click reaction
with tetraalkyne 2 and Cu(I) for 1 h. The cells were again washed
twice with 1x PBS-T. Finally we added Cu(I) and the Tamra-azide
10 to the cells and allowed the final click cocktail to penetrate the
cells for 30 minutes. After again two time washing with
guanidinium isocyanate we studied the cells by fluorescence
microscopy. This time the experiment was a full success. We
detected a strongly reduced background, not higher than in the
control experiment with just EdU (Fig. 2B,C). The obtained
fluorescence signal was highly improved by a factor of 2.5. Most
importantly, the direct inspection of the cells by fluorescence
microscopy shows a strongly improved signal to noise ratio (Fig.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft for financial
support via SFB1032 (TP-A5), SFB749 (TP-A4), SPP1784,
2C, S5).
M
CA275 and the Excellence Cluster CiPS . Further support from
Next, the new single and double dendrimer based methods were
applied for high throughput screening (HTS). This method is the
most widely used tool not only for the development of new
pharmaceuticals compounds but also needed for the
measurement of the response of cells to different nutrients,
mitogens, cytokines, growth factors and toxic agents . With the
signal amplification provided by our dendrimers, we were able to
detect a strong, specific signal even when only a very small
number of cells like just 100 cells were present per well (Fig. 3).
This is a significant improvement over contemporary methods that
need 500 to 1000 cells per well, which allows now the reliable
detection of small number of proliferating cells that otherwise
escape staining and detection. What we noted, however, is a
reduction of the signal intensity in the double-dendrimer approach,
which is likely due to self-quenching of the then densly packed
fluorophores. To solve this, optimization of the dendrimers is now
required.
the European Union via the Marie Curie International Training and
Mobility Network "Clickgene" (grant No. 642023) is acknowledged.
Keywords: click chemistry • cell proliferation • dendrimer •
fluorescence microscopy • high throughput screening
[
8]
[1] a) M. G. Daidone, R. Silvestrini, J. Natl. Cancer Inst. Monogr. 2001, 27-
35; b) S. H. Torp, C. F. Lindboe, U. S. Granli, T. M. Moen, T. Nordtomme,
Clin. Neuropathol. 2001, 20, 190-195; c) M. A. Aleskandarany, A. R.
Green, A. A. Benhasouna, F. F. Barros, K. Neal, J. S. Reis-Filho, I. O.
Ellis, E. A. Rakha, Breast Cancer Res. 2012, 14, R3; dM. Wang, J. Wu, Y.
Guo, X. Chang, T. Cheng, Mol Med Rep 2017, 15, 1607-1612; e) T.
Wieder, E. Brenner, H. Braumuller, O. Bischof, M. Rocken, Cancer
Metastasis Rev. 2017; f) A. S. Thorat, N. A. Sonone, V. V. Choudhari, R.
M. Devarumath, K. H. Babu, 3 Biotech. 2017, 7, 16; g) H. Chen, X. Gu, Y.
Liu, J. Wang, S. E. Wirt, R. Bottino, H. Schorle, J. Sage, S. K. Kim, Nature
2011, 478, 349-355; h) K. D. Poss, L. G. Wilson, M. T. Keating, Science
2002, 298, 2188-2190.
[
2] a) X. Lu, J. W. Horner, E. Paul, X. Shang, P. Troncoso, P. Deng, S. Jiang,
Q. Chang, D. J. Spring, P. Sharma, J. A. Zebala, D. Y. Maeda, Y. A.
Wang, R. A. DePinho, Nature 2017, 543, 728-732; b) N. V. Jordan, A.
Bardia, B. S. Wittner, C. Benes, M. Ligorio, Y. Zheng, M. Yu, T. K.
Sundaresan, J. A. Licausi, R. Desai, R. M. O'Keefe, R. Y. Ebright, M.
Boukhali, S. Sil, M. L. Onozato, A. J. Iafrate, R. Kapur, D. Sgroi, D. T.
Ting, M. Toner, S. Ramaswamy, W. Haas, S. Maheswaran, D. A. Haber,
Nature 2016, 537, 102-106; c) M. A. Erb, T. G. Scott, B. E. Li, H. Xie, J.
Paulk, H. S. Seo, A. Souza, J. M. Roberts, S. Dastjerdi, D. L. Buckley, N.
E. Sanjana, O. Shalem, B. Nabet, R. Zeid, N. K. Offei-Addo, S. Dhe-
Paganon, F. Zhang, S. H. Orkin, G. E. Winter, J. E. Bradner, Nature 2017,
543, 270-274.
2
2
1
1
500
000
500
000
1
1
20
00
8
6
4
0
0
0
20
0
[
[
3] a) G. I. Evan, K. H. Vousden, Nature 2001, 411, 342-348; b) G. Evan, T.
Littlewood, Science 1998, 281, 1317-1322.
4] a) A. Salic, T. J. Mitchison, Proc. Natl. Acad. Sci. U. S. A. 2008, 105,
2415-2420; b) M. Ababou, V. Dumaire, Y. Lecluse, M. Amor-Gueret,
5
00
0
Oncogene 2002, 21, 2079-2088; c) B. L. Cavanagh, T. Walker, A. Norazit,
A. C. Meedeniya, Molecules 2011, 16, 7980-7993.
5] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int .Ed. 2001,
[
40, 2004-2021; b) P. M. Gramlich, C. T. Wirges, A. Manetto, T. Carell,
1
00
500
1000
2000
Angew. Chem. Int. Ed. 2008, 47, 8350-8358.
[
[
6] J. Gierlich, G. A. Burley, P. M. Gramlich, D. M. Hammond, T. Carell, Org.
Lett. 2006, 8, 3639-3642.
Number of cells
7] S. Nik-Zainal, P. Van Loo, D. C. Wedge, L. B. Alexandrov, C. D.
Greenman, K. W. Lau, K. Raine, D. Jones, J. Marshall, M. Ramakrishna,
A. Shlien, S. L. Cooke, J. Hinton, A. Menzies, L. A. Stebbings, C. Leroy,
M. Jia, R. Rance, L. J. Mudie, S. J. Gamble, P. J. Stephens, S. McLaren,
P. S. Tarpey, E. Papaemmanuil, H. R. Davies, I. Varela, D. J. McBride, G.
R. Bignell, K. Leung, A. P. Butler, J. W. Teague, S. Martin, G. Jonsson, O.
Mariani, S. Boyault, P. Miron, A. Fatima, A. Langerod, S. A. Aparicio, A.
Tutt, A. M. Sieuwerts, A. Borg, G. Thomas, A. V. Salomon, A. L.
Richardson, A. L. Borresen-Dale, P. A. Futreal, M. R. Stratton, P. J.
Campbell, C. Breast Cancer Working Group of the International Cancer
Genome, Cell 2012, 149, 994-1007.
Figure 3: Application of the single and double dendrimer amplified assay in high
throughput screening. Cells were grown on microplate with different densities
100, 500, 1000 and 2000 cells/well) and incubated for 2 h with 5-ethinyl-dU at
7°C. Negative control cells were grown without EdU labeling. The cells were
fixed and permeablized and the present alkynes reacted with a tetraazide
dendrimer 1 and Tamra-alkyne (double click, gray bars) or with tetraazide 1,
tetraalkyne 2 and Tamra-azide (triple click, orange bars) in the presence of Cu(I)
in situ. Positive control cells were reacted with Tamra-azide in presence of Cu(I)
(
3
(
control, blue bars). The cellular signal of duplicate samples was measured with
a Tecan microplate reader. After subtraction of the background fluorescence, it
was possible to detect a stronger signal even with only 100 cells. Blue: Standard
click protocol. Grey: Single dendrimer approach with dendrimer 1. Orange:
Double dendrimer approach with the dendrimers 1 and 2.
[
8] F. Zanella, J. B. Lorens, W. Link, Trends in Biotechnology, 28, 237-245.
This article is protected by copyright. All rights reserved.