+
+
6804
J. Am. Chem. Soc. 1996, 118, 6804-6805
Scheme 1. Proposed N-Acetyl-â-hexosaminidase
Mechanisms
NAG-thiazoline, An N-Acetyl-â-hexosaminidase
Inhibitor That Implicates Acetamido Participation
Spencer Knapp,*,† David Vocadlo,‡ Zhinong Gao,†
Brian Kirk,† Jianping Lou,† and Stephen G. Withers*,‡
Departments of Chemistry
RutgerssThe State UniVersity of New Jersey
New Brunswick, New Jersey 08903
UniVersity of British Columbia, VancouVer
British Columbia, Canada V6T 1Z1
ReceiVed March 14, 1996
N-Acetylhexosaminidases (NAGases) are enzymes that pro-
mote the cleavage of N-acetylhexosaminides, as during glyco-
protein processing and glycolipid catabolism.1 They are highly
specific inasmuch as gluco- and galactopyranosides lacking the
2-acetamido functionality are poor substrates.2 A number of
inhibitors of NAGases have been discovered; these typically
mimic some aspect of an enzyme-protonated 2-acetamidopy-
ranoside substrate or a derived transition state (flattened C-1
conformation, positive or partially positive charge), and they
uniformly possess an acetamido group at the C-2 site.3-6 By
analogy to a widely cited mechanism for retaining â-glucosi-
dases,7 retaining N-acetyl-â-hexosaminidases may be said to
operate by stabilizing a transition state leading to a covalent
enzyme-substrate complex (Scheme 1, upper path).8 Alterna-
tively, the configuration-retaining aspect of certain NAGases
may be attributed to participation of the neighboring C-2
acetamido group, leading initially to a cyclized oxazoline
intermediate (Scheme 1, lower path).9 None of the existing
NAGase inhibitors points to a choice between these two
mechanistic possibilities, as the latter both feature similar
transition state characteristics in the vicinity of C-1.6 However,
allosamidin (2), an inhibitor of chitinase, incorporates a cyclic
Scheme 2. Synthesis of NAG-Thiazoline and a Precursor
Substrate
† Rutgers University.
‡ University of British Columbia.
(1) (a) Kennedy, J. F.; White, C. A. BioactiVe Carbohydrates in
Chemistry, Biochemistry, and Biology; John Wiley & Sons, New York,
1983; pp 230-242. (b) Conzelmann, E.; Sandhoff, K. AdV. Enzymol. Relat.
Areas Mol. Biol. 1987, 60, 89-216. (c) Kresse, H.; Glossl, J. AdV. Enzymol.
Relat. Areas Mol. Biol. 1987, 60, 217-311.
(2) The contribution of the acetamido group to NAGase binding has been
estimated at 4.2 kcal/mol. Lai, E. C. K.; Withers, S. G. Biochemistry 1994,
33, 14743-14749.
(3) 2-Acetamido-2-deoxy-D-gluconolactone: (a) Conchie, J.; Hay, A. J.;
Strachan, I.; Levvy, G. A. Biochem. J. 1967, 102, 929-941. (b) Li, S. C.;
Li, Y. T. J. Biol. Chem. 1970, 245, 5153-5160. (c) Sandhoff, K.; Wassle,
W. Hoppe-Seyler’s Z. Physiol. Chem. 1971, 352, 1119-1133. (d) Villar,
E.; Cabezas, J. E.; Calvo, P. Biochimie 1984, 66, 291-304. (e) Horsch,
M.; Hoesch, L.; Fleet, G. W.; Rast, D. M. J. Enzyme Inhib. 1993, 7, 47-
55.
(4) 2-Acetamido-(2-deoxy and 1,2-dideoxy)nojirimycin: (a) Kappes, E.;
Legler, G. J. Carbohydr. Chem. 1989, 8, 371-388. (b) Kajimoto, T.; Liu,
K. K.-C.; Pederson, R. L.; Zhong, Z.; Ichikawa, Y.; Porco, J. A.; Wong,
C.-H. J. Am. Chem. Soc. 1991, 113, 6187-6196. (c) Legler, G.; Lullau,
E.; Kappes, E.; Kastenholz, F. Biochim. Biophys. Acta 1991, 1080, 89-95.
(d) Fleet, G. W. J.; Smith, P. W.; Nash, R. J.; Fellows, L. E.; Parekh, R.
B.; Rademacher, T. W. Chem. Lett. 1986, 1051-1054.
(5) Some recent NAGase inhibitors: (a) Heightman, T. D.; Ermert, P.;
Klein, D.; Vasella, A. HelV. Chim. Acta 1995, 78, 514-532. (b) Liessem,
B.; Giannis, A.; Sandhoff, K.; Nieger, M. Carbohydr. Res. 1993, 250, 19-
30. (c) Wolk, D. R.; Vasella, A.; Schweikart, T.; Peter, M. G. HelV. Chim.
Acta 1992, 75, 323-334. (d) Aoyagi, T.; Suda, H.; Uotani, K.; Kojima, F.;
Aoyama, T.; Horiguchi, K.; Hamada, M.; Takeuchi, T. J. Antibiot. 1992,
45, 1404-1408. (e) Aoyama, T.; Naganawa, H.; Suda, H.; Uotani, K.;
Aoyagi, T.; Takeuchi, T. J. Antibiot. 1992, 45, 1557-1558. (f) Horsch,
M.; Hoesch, L.; Vasella, A.; Rast, D. M. Eur. J. Biochem. 1991, 197, 815-
818.
isourea functionality that, when protonated, resembles the
cyclized oxazoline shown in Scheme 1. A recent crystal-
lographic study of a chitinase/2 complex shows a position of
the inhibitor and a hydrogen-bonding pattern consistent with
acetamido participation in the natural substrate.10 Although the
“NAG-oxazoline” itself is too hydrolytically unstable for use
as an inhibitor of NAGases,6 we have prepared a stable version,
“NAG-thiazoline” 1, and report its powerful inhibitory effect
(6) An acetamido conduritol epoxide showed kinetics with jack bean
NAGase that suggested possible formation of an oxazoline intermediate.
Legler, G.; Bollhagen, R. Carbohydr. Res. 1992, 233, 113-123.
(7) Sinnott, M. L. Chem. ReV. 1990, 90, 1171-1202.
on jack bean N-acetyl-â-hexosaminidase and its enzyme-
(8) Koshland, D. E. Biol. ReV. 1953, 28, 416-436.
mediated formation from a precursor substrate.
(9) Lowe, G.; Sheppard, G.; Sinnott, M. L.; Williams, A. Biochem. J.
1967, 104, 893-899. Jones, C. S.; Kosman, D. J. J. Biol. Chem. 1980,
255, 11861-11869.
(10) van Scheltinga, A. C. T.; Armand, S.; Kalk, K. H.; Isogai, A.;
Henrissat, B.; Dijkstra, B. W. Biochemistry 1995, 34, 15619-15623.
S0002-7863(96)00826-8 CCC: $12 00
© 1996 American Chemical Society