COMMUNICATIONS
Dearomatization of Indoles
[2] For reviews: a) Q.-H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M.
Liu, K.-X. Su, Chem. Rev. 2005, 105, 1603–1662; b) G.
De Faveri, G. Ilyashenko, M. Watkinson, Chem. Soc.
Rev. 2011, 40, 1722–1760; c) Y.-G. Zhu, Q. Wang, R. G.
Cornwall, Y. Shi, Chem. Rev. 2014, 114, 8199–8256.
[3] For reviews: a) E. M. McGarrigle, D. G. Gilheany,
Chem. Rev. 2005, 105, 1563–1602; b) E. A. C. Davie,
S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007,
107, 5759–5812.
Scheme 3. The gram-scale reaction.
[4] For reviews: a) A. Lattanzi, Curr. Org. Synth. 2008, 5,
117–133; b) C.-W. Zheng, G. Zhao, Chin. Sci. Bull.
2010, 55, 1712–1722.
In summary, we have developed an asymmetric
dearomatization of indole derivatives via a vanadium-
catalyzed asymmetric epoxidation followed with an
intramolecular phenol-directed epoxide opening reac-
tion. This process features excellent enantioselective
control and operational simplicity. Studies to further
extend the asymmetric epoxidative dearomatization
reactions are currently ongoing in our laboratory.
[5] For a review: Z. Li, H. Yamamoto, Acc. Chem. Res.
2013, 46, 506–518.
[6] For reviews: a) C.-X. Zhuo, W. Zhang, S.-L. You,
Angew. Chem. 2012, 124, 12834–12858; Angew. Chem.
Int. Ed. 2012, 51, 12662–12686; b) Q. Ding, X. Zhou, R.
Fan, Org. Biomol. Chem. 2014, 12, 4807–4815.
[7] For recent reviews, see: a) S. Quideau, L. PouysØgu, D.
Deffieux, Synlett 2008, 467–495; b) L. PouysØgu, D.
Deffieux, S. Quideau, Tetrahedron 2010, 66, 2235–2261;
for recent elegant examples: c) J. An, Y.-Q. Zou, Q.-Q.
Yang, Q. Wang, W.-J. Xiao, Adv. Synth. Catal. 2013,
355, 1483–1489; d) W. Ding, Q.-Q. Zhou, J. Xuan, T.-R.
Li, L.-Q. Lu, W.-J. Xiao, Tetrahedron Lett. 2014, 55,
4648–4652.
Experimental Section
General Procedure for the Asymmetric
Dearomatization Reaction of Indoles
[8] For asymmetric oxidative dearomatization reactions,
see: a) J.-L. Liang, S.-X. Yuan, P. W. H. Chan, C.-M.
Che, Tetrahedron Lett. 2003, 44, 5917–5920; b) J. Zhu,
N. P. Grigoriadis, J. P. Lee, J. A. Porco, Jr., J. Am.
Chem. Soc. 2005, 127, 9342–9343; c) J. V. Mulcahy, J.
Du Bois, J. Am. Chem. Soc. 2008, 130, 12630–12631;
d) T. Dohi, A. Maruyama, N. Takenaga, K. Senami, Y.
Minamitsuji, H. Fujioka, S. B. Caemmerer, Y. Kita,
Angew. Chem. 2008, 120, 3847–3850; Angew. Chem.
Int. Ed. 2008, 47, 3787–3790; e) S. Dong, J. Zhu, J. A.
Porco Jr, J. Am. Chem. Soc. 2008, 130, 2738–2739; f) M.
Movassaghi, M. A. Schmidt, J. A. Ashenhurst, Org.
Lett. 2008, 10, 4009–4012; g) J. K. Boppisetti, V. B.
Birman, Org. Lett. 2009, 11, 1221–1223; h) S. Quideau,
G. Lyvinec, M. Marguerit, K. Bathany, A. Ozanne-
Beaudenon, T. Buffeteau, D. Cavagnat, A. ChØnedØ,
Angew. Chem. 2009, 121, 4675–4679; Angew. Chem.
Int. Ed. 2009, 48, 4605–4609; i) M. Uyanik, T. Yasui, K.
Ishihara, Angew. Chem. 2010, 122, 2221–2223; Angew.
Chem. Int. Ed. 2010, 49, 2175–2177; j) M. Uyanik, T.
Yasui, K. Ishihara, Tetrahedron 2010, 66, 5841–5851;
k) A. R. Germain, D. M. Bruggemeyer, J. Zhu, C.
Genet, P. OꢀBrien, J. A. Porco Jr, J. Org. Chem. 2011,
76, 2577–2584; l) F. Kolundzic, M. N. Noshi, M. Tjan-
dra, M. Movassaghi, S. J. Miller, J. Am. Chem. Soc.
2011, 133, 9104–9111; m) S. Han, M. Movassaghi, J.
Am. Chem. Soc. 2011, 133, 10768–10771; n) T. Oguma,
T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017–20020;
o) T. Dohi, N. Takenaga, T. Nakae, Y. Toyoda, M. Ya-
masaki, M. Shiro, H. Fujioka, A. Maruyama, Y. Kita, J.
Am. Chem. Soc. 2013, 135, 4558–4566; p) M. Uyanik, T.
Yasui, K. Ishihara, Angew. Chem. 2013, 125, 9385–
9388; Angew. Chem. Int. Ed. 2013, 52, 9215–9218;
q) K. A. Volp, A. M. Harned, Chem. Commun. 2013,
49, 3001–3003; r) C. Bosset, R. Coffinier, P. A. Peixoto,
M. EI Assal, K. Miqueu, J.-M. Sotiropoulos, L. PouysØ-
To a solution of VO(acac)2 (0.02 mmol, 5.2 mg) in DCM
(2 mL) was added ligand 3 (0.024 mmol, 17.2 mg), and the
mixture was stirred for 1 h at room temperature. The above
mixture was stirred at 08C for 10 min, tert-butyl hydroperox-
ide (0.75 mmol, 104 mL, 70% aqueous solution) and sub-
strate 1 (0.5 mmol) were then added. After the reaction was
complete as monitored by TLC, aqueous saturated Na2SO3
(2 mL) was added. The organic layer was separated and the
aqueous layer was extracted with DCM (32 mL). The
combined organic layers were washed with brine (4 mL),
separated, dried over Na2SO4, filtered and concentrated
under reduced pressure. The crude product was purified by
column chromatography on silica gel (DCM/EtOAc=40/1,
v/v) to afford the desired product 2.
Acknowledgements
We thank the National Basic Research Program of China
(973 Program 2015CB856600) and National Natural Science
Foundation of China (21272252, 21332009, 21421091) for
generous financial support.
References
[1] a) L. P. C. Nielsen, E. N. Jacobsen, in: Aziridines and
Epoxides in Organic Synthesis, 1st edn., Vol. 7, (Ed. :
A. K. Yudin), Wiley-VCH, Weinheim, 2006, pp 229–
266; b) B. Das, K. Damodar, in: Heterocycles in Natural
Product Synthesis, 1st edn., Vol. 2, (Eds : K. C. Majum-
dar, S. K. Chattopadhyay), Wiley-VCH, Weinheim,
2011, pp 63–67.
Adv. Synth. Catal. 2015, 357, 3064 – 3068
ꢁ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3067