10.1002/chem.201903024
Chemistry - A European Journal
COMMUNICATION
The regioselectivity of the addition of the ynolate and other
nucleophiles to 3-silylbenzyne can be elucidated by the steric
effect rather than – I effect, according to Tokiwa and Akai.20 The
sterically bulky nucleophiles tended to attack at C1, while C2
became electronically positive owing to its silicon substituent.
However, secondary orbital interactions and/or Si-O (ynolate)
interactions could not be dismissed because stronger driving
forces should be a prerequisite for producing these highly
distorted products with high regioselectivity.
In summary, we successfully synthesized distorted 1,8,13-
trisilyltriptycenes with high regioselectivity via ynolate-aryne triple
addition. The distortion of aromatic rings induced the step-by-step
halogenation reactions to afford selective halogenated triptycenes
including chiral triptycenes, which represent a useful platform for
constructing functionalized triptycenes. Theoretical calculations
for the regioselectivity and synthetic applications are underway.
Keywords: triptycene • ynolate• distortion • aryne •
regioselectivity
References
[1] Reviews: a) Iptycenes Chemistry, (Ed.: C.-F. Chen, Y.-X. Ma), Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013; b) Y. Jiang, C. F. Chen, Eur. J.
Org. Chem. 2011, 32, 6377–6403.
[2] Reviews: a) C. F. Chen, Y. Han, Acc. Chem. Res. 2018, 51, 2093–2106; b)
Y. Han, Z. Meng, Y. X. Ma, C. F. Chen, Acc. Chem. Res. 2014, 47, 2026–
2040; Recent examples: c) T. Ikai, N. Nagata, S. Awata, Y. Wada, K.
Maeda, M. Mizuno, T. M. Swager, RSC Adv. 2018, 8, 20483–20487; d) J.
Q. Wang, J. Li, G. W. Zhang, C. F. Chen, J. Org. Chem. 2018, 83, 11532–
11540.
[3] Reviews: a) J. H. Chong, M. J. MacLachlan, Chem. Soc. Rev. 2009, 38,
3301–3315; b) C.-F. Chen, Chem. Commun. 2011, 47, 1674–1688.
[4] a) T. M. Swager, Acc. Chem. Res. 2008, 41, 1181–1189; b) D. J. Murray,
D. D. Patterson, P. Payamyar, R. Bhola, W. Song, M. Lackinger, A. D.
Schlüter, B. T. King, J. Am. Chem. Soc. 2015, 137, 3450–3453.
[5] a) N. Seiki, Y. Shoji, T. Kajitani, F. Ishiwari, A. Kosaka, T. Hikima, M. Takata,
T. Someya, T. Fukushima, Science 2015, 348, 1122–1126; b) S. R.
Peurifoy, E. Castro, F. Liu, X. Y. Zhu, F. Ng, S. Jockusch, M. L. Steigerwald,
L. Echegoyen, C. Nuckolls, T. J. Sisto, J. Am. Chem. Soc. 2018, 140, 9341–
9345; c) K. Kawasumi, T. Wu, T. Zhu, H. S. Chae, T. Van Voorhis, M. A.
Baldo, T. M. Swager, J. Am. Chem. Soc. 2015, 137, 11908–11911.
[6] a) A. Schwartzen, M. Rovers, B. Neumann, H.-G. Stammler, N. W. Mitzel,
Eur. J. Org. Chem. 2018, 5323–5333; b) I. Kisets, D. Gelman,
Organometallics 2018, 37, 526–529.
MeO
B(OH)2
(18 equiv)
Me
MeO
MeO
Me
Br
Pd(OAc)2 (25 mol%)
XPhos (50 mol%)
HO
[7] G. Wittig, R. Ludwig, Angew. Chem. 1956, 68, 40–40.
[8] a) P. D. Bartlett, M. J. Ryan, S. G. Cohen, J. Am. Chem. Soc. 1942, 64,
2649–2653; b) M. S. Taylor, T. M. Swager, Org. Lett. 2007, 9, 3695–3697.
c) H. Hart, Pure Appl. Chem. 1993, 65, 27–34; Review: c) L. Zhao, Z. Li, T.
Wirth, Chem. Lett. 2010, 39, 658–667.
[9] Reviews: a) M. Shindo, K. Matsumoto, Recent Advances in the Chemistry
of Metal Ynolates. In PATAI'S Chemistry of Functional Groups (Eds.: J.
Zabicky), Wiley & Sons, Chichester, 2018, Vol. 2, pp 483-513; b) M. Shindo,
Tetrahedron 2007, 63, 10–36.
HO
THF, K2CO3 aq
60 °C, 24 h
Br
Br
5C-Br
(18 equiv)
85%
MeO
Bpin
8
Pd(OAc)2 (25 mol%)
XPhos (50 mol%)
THF, K2CO3 aq
60 °C, 24 h
(18 equiv)
[10] S. Umezu, G. d. P. Gomes, T. Yoshinaga, M. Sakae, K. Matsumoto, T.
Iwata, I. Alabugin, M. Shindo, Angew. Chem. Int. Ed. 2017, 56, 1298–1302;
Angew. Chem. 2017,129,1318–1322.
Pd(OAc)2 (50 mol%)
MePhos (100 mol%)
CuI (25 mol%)
Me
81%
[11] R. V. Stevens, G. S. Bisacchi, J. Org. Chem. 1982, 47, 2393–2396.
[12] a) E. Picazo, K. N. Houk, N. K. Garg, Tetrahedron Lett. 2015, 56, 3511–
3514; b) J. M. Medina, J. L. MacKey, N. K. Garg, K. N. Houk, J. Am. Chem.
Soc. 2014, 136, 15798–15805; c) G-.Y. J. Im, S. M. Bronner, A. E. Goetz,
R. S. Paton, P. H-.Y. Cheong, K. N. Houk, N. K. Garg, J. Am. Chem. Soc.
2010, 132, 17933–17944.
HO
Me
toluene, Et3N
85 °C, 24 h
HO
10
83%
9
[13] a) A. Schwartzen, M. Rovers, B. Neumann, H.-G. Stammler, N. W. Mitzel,
Eur. J. Org. Chem. 2018, 5323–5333; b) see ref 5a; b) F. Ishiwari, G.
Nascimbeni, E. Sauter, H. Tago, Y. Shoji, S. Fujii, M. Kiguchi, T. Tada, M.
Zharnikov, E. Zojer, T. Fukushima, J. Am. Chem. Soc. 2019, 141,
5995−6005; c) F. K.-C. Leung, F. Ishiwari, Y. Shoji, T. Nishikawa, R.
Takeda, Y. Nagata, M. Suginome, Y. Uozumi, Y. M. A. Yamada, T.
Fukushima, ACS Omega 2017, 2, 1930–1937.
[14] S. Akai, T. Ikawa, S. I. Takayanagi, Y. Morikawa, S. Mohri, M. Tsubakiyama,
M. Egi, Y. Wada, Y. Kita, Angew. Chem. Int. Ed. 2008, 47, 7673–7676.
[15] S. M. Bronner, J. L. MacKey, K. N. Houk, N. K. Garg, J. Am. Chem. Soc.
2012, 134, 13966–13969.
[16] E. Masson, M. Schlosser, Eur. J. Org. Chem. 2005, 4401–4405.
[17] M. Shindo, K. Matsumoto, K. Shishido, Org. Synth. 2007, 84, 11–21.
[18] E. Masson, M. Schlosser, Eur. J. Org. Chem. 2005, 4401–4405.
[19] M. Nieger, A. Konig, F. Vogtle, CSD Communication, 2004. DOI:
10.5517/cc88n6c
Scheme 3. Coupling reactions of tribromotriptycene 5C-Br.
Acknowledgements
This work was partially supported by the JSPS KAKENHI Grant
Number (No. JP18H02557, JP18H04418, JP18H04624,
JP17K14449), the Asahi Glass Foundation (T.I.), Qdai-jump
Research Program Wakaba Challenge at Kyushu University (T.I.),
and the MEXT Project of “Integrated Research Consortium on
Chemical Sciences” (T.I.). This work was performed under the
Cooperative Research Program “Network Joint Research Center
for Materials and Devices.” We thank Mr. T. Matsumoto at Kyushu
University for his assistance with the X-ray crystal structure
analyses.
[20] T. Ikawa, A. Takagi, M. Goto, Y. Aoyama, Y. Ishikawa, Y. Itoh, S. Fujii, H.
Tokiwa, S. Akai, J. Org. Chem. 2013, 78, 2965–2983.
This article is protected by copyright. All rights reserved.