Journal of the American Chemical Society
Page 4 of 11
(17) Szkop, K. M.; Geeson, M. B.; Stephan, D. W.; Cummins, C.
Supplementary Information
1
2
3
4
5
6
7
8
Synthesis of acyl(chloro)phosphines enabled by phosphinidene
transfer. Chem. Sci. 2019, 10, 3627–3631.
Experimental and computational details are provided in the
supporting information. This material is available free of
1936231 and 1936232.
(18) Lennon, P.; Madhavarao, M.; Rosan, A.; Rosenblum, M.
The addition of heteroatomic nucleophiles to dicarbonyl-
η5-cyclopentadienyl(olefin)iron cations. J. Organomet. Chem.
1976, 108, 93–109.
(19) Knoth, W. H. Reactions of ethylene coordinated to molybde-
num, tungsten, and iron. Inorg. Chem. 1975, 14, 1566–1572.
(20) Bai, W.; Chen, J.; Jia, G. “4.10 Reactions of Nucleophiles with
Coordinated Alkynes, Alkenes, and Allenes” in Comprehensive
Organic Synthesis II; Elsevier: Amsterdam, Netherlands, 2014;
pp 580–647.
References
(21) Giering, W. P.; Rosenblum, M.; Tancrede, J. Stere-
ospecific reduction of epoxides with sodium (cyclopentadi-
enyl)dicarbonylferrate. New route to cationic iron-olefin com-
plexes. J. Am. Chem. Soc. 1972, 94, 7170–7172.
(1) (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B.
Stereoselective Cyclopropanation Reactions. Chem. Rev. 2003,
103, 977–1050; (b) Mu¨ller, P.; Fruit, C. Enantioselective Cat-
alytic Aziridinations and Asymmetric Nitrene Insertions into
CH Bonds. Chem. Rev. 2003, 103, 2905–2920; (c) Lane, B. S.;
Burgess, K. Metal-Catalyzed Epoxidations of Alkenes with Hy-
drogen Peroxide. Chem. Rev. 2003, 103, 2457–2474.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22) Muldoon, J. A.; Varga, B. R.; Deegan, M. M.; Chapp, T. W.;
E¨ord¨ogh, A. M.; Hughes, R. P.; Glueck, D. S.; Moore, C. E.;
Rheingold, A. L. Inversion of Configuration at the Phosphorus
Nucleophile in the Diastereoselective and Enantioselective Syn-
thesis of P-Stereogenic syn-Phosphiranes from Chiral Epoxides.
Angew. Chem., Int. Ed. 2018, 57, 5047–5051.
(2) (a) Kamer, P. C. J., van Leeuwen, P. W. N. M., Eds. “Highly
Strained Organophosphorus Compound” in Phosphorus(III)
Ligands in Homogeneous Catalysis: Design and Synthesis; John
Wiley & Sons, Ltd: Chichester, UK, 2012; (b) Liedtke, J.;
Loss, S.; Widauer, C.; Gru¨tzmacher, H. Phosphiranes as Ligands
for Platinum Catalysed Hydrosilylations. Tetrahedron 2000, 56,
143–156; (c) Gru¨tzmacher, H.; Liedtke, J.; Frasca, G.; L¨ang, F.;
P´e, N. Syntheses and Chemistry of Very Robust Phosphiranes.
Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 1771–1774;
(d) Liedtke, J.; Ru¨egger, H.; Loss, S.; Gru¨tzmacher, H. BABAR-
Phos Rhodium Complexes: Reversible Metal Insertion into a
Three-Membered Ring and Catalytic Hydroborations. Angew.
Chem., Int. Ed. 2000, 39, 2478–2481.
(23) Marinetti, A.; Mathey, F.; Ricard, L. Synthesis of optically ac-
tive phosphiranes and their use as ligands in rhodium(I) com-
plexes. Organometallics 1993, 12, 1207–1212.
(24) Li, X.; Robinson, K. D.; Gaspar, P. P. A New Stereoselective
Synthesis of Phosphiranes. J. Org. Chem. 1996, 61, 7702–7710.
(25) Baudler, M.; Germeshausen, J. Beitr¨age zur Chemie des Phos-
phors, 154. 1-tert-Butyl-2-methylphosphiran – ein thermisch
best¨andiges Monophosphiran. Chem. Ber. 1985, 118, 4285–
4287.
(26) Ficks, A.; Martinez-Botella, I.; Stewart, B.; Harrington, R. W.;
Clegg, W.; Higham, L. J. Taming functionality: easy-to-handle
chiral phosphiranes. Chem. Commun. 2011, 47, 8274.
(27) (a) Nesterov, V.; Schnakenburg, G.; Espinosa, A.; Streubel, R.
Synthesis and Reactions of the First Room Temperature Sta-
ble Li/Cl Phosphinidenoid Complex. Inorg. Chem. 2012, 51,
(3) (a) Kobayashi, S.; Kadokawa, J.-I. Ring-opening polymeriza-
tion of 1-(2,4,6-tri-tert-butylphenyl)-phosphirane: direct synthe-
sis of a polyphosphine derivative. Macromol. Rapid Commun.
1994, 15, 567–571; (b) Kadokawa, J.-I.; Kobayashi, S. New
Ring-Opening Polymerization of Phosphorus-Containing Cyclic
Monomers. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177,
1387–1390.
¨
12343–12349; (b) Nesterov, V.; Ozbolat Sch¨on, A.; Schnaken-
burg, G.; Shi, L.; Cang¨onu¨l, A.; van Gastel, M.; Neese, F.;
Streubel, R. An Unusal Case of Facile Non-Degenerate P–C
Bond Making and Breaking. Chem. Asian J. 2012, 7, 1708–
1712; (c) Fassbender, J.; Schnakenburg, G.; Ferao, A. E.;
Streubel, R. Effects of diminished steric protection at phos-
phorus on stability and reactivity of oxaphosphirane complexes.
Dalton Trans. 2018, 47, 9347–9354; (d) Schmer, A.; Volk, N.;
Espinosa Ferao, A.; Streubel, R. Access and unprecedented re-
action pathways of Li/Cl phosphinidenoid iron(0) complexes.
Dalton Trans. 2019, 48, 339–345.
(4) Wit, J. B. M.; de Jong, G. B.; Schakel, M.; Lutz, M.;
Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K. iPr2N–
P=Fe(CO)4 in Olefinic Solvents:
A Reservoir of a Tran-
sient Phosphinidene Complex Capable of Substrate Hopping.
Organometallics 2016, 35, 1170–1176.
(5) Marinetti, A.; Mathey, F. The carbene-like behavior of terminal
phosphinidene complexes toward olefins. A new access to the
phosphirane ring. Organometallics 1984, 3, 456–461.
(6) Breen, T. L.; Stephan, D. W. Phosphinidene Transfer Reactions
of the Terminal Phosphinidene Complex Cp2Zr(PC6H2-2,4,6-t-
Bu3)(PMe3). J. Am. Chem. Soc. 1995, 117, 11914–11921.
(7) Waterman, R.; Hillhouse, G. L. Group Transfer from Nickel
Imido, Phosphinidene, and Carbene Complexes to Ethylene with
Formation of Aziridine, Phosphirane, and Cyclopropane Prod-
ucts. J. Am. Chem. Soc. 2003, 125, 13350–13351.
(28) Malish, W.; Angerer, W.; Cowley, A. H.; Norman, N. C.
Dicarbonyl(η5-pentamethylcyclopentadienyl)ferrio(t-butyl)-
chlorophosphine: a metallo-phosphine exhibiting multifaceted
reactivity. J. Chem. Soc., Chem. Commun. 1985, 0, 1811–1812.
(29) Mullins, R. J.; Vedernikov, A.; Viswanathan, R. Competition
Experiments as a Means of Evaluating Linear Free Energy Re-
lationships. An Experiment for the Advanced Undergraduate
Organic Chemistry Lab. J. Chem. Educ. 2004, 81, 1357.
(30) Hung, J. T.; Lammertsma, K. Hammett reaction constant for a
terminal methylphosphinidene complex. Organometallics 1992,
11, 4365–4366.
(8) Vaheesar, K.; Kuntz, C. M.; Sterenberg, B. T. Formation of
phosphorus heterocycles using a cationic electrophilic phos-
phinidene complex. J. Organomet. Chem. 2013, 745-746, 347–
355.
(9) Goumans, T. P. M.; Ehlers, A. W.; Lammertsma, K. Toward
the catalytic synthesis of phosphiranes. A computational study.
J. Organomet. Chem. 2005, 690, 5517–5524.
(31) Ashby, M. T.; Enemark, J. H. Cycloaddition of alkenes and
alkynes to CpFe(CO)2PR2 to give Cp(CO)FePR2C=CC=O
heterometallacycles. Organometallics 1987, 6, 1323–1327.
(32) Qu, Z.-W.; Zhu, H.; Grimme, S. Acylation Reactions of Dibenzo-
7-phosphanorbornadiene: DFT Mechanistic Insights. Chem-
istryOpen 2019, 8, 807–810.
(10) van Assema, S. G. A.; de Kanter, F. J. J.; Schakel, M.; Lam-
mertsma, K. Decomplexation of Phosphirane and Phosphirene
Complexes. Organometallics 2006, 25, 5286–5291.
(11) Amme, M. J.; Kazi, A. B.; Cundari, T. R. Copper-catalyzed
phosphinidene transfer to ethylene, acetylene, and carbon
monoxide: A computational study. Int. J. Quantum Chem.
2010, 110, 1702–1711.
(33) M´ezailles, N.; Fanwick, P. E.; Kubiak, C. P. Synthesis and
Reactivity of Phosphirane Ligands and the Structural Charac-
terization of Cp*IrCl2(tert-butylphosphirane). Organometallics
1997, 16, 1526–1530.
(12) Abbenseth, J.; Delony, D.; Neben, M. C.; Wu¨rtele, C.;
de Bruin, B.; Schneider, S. Interconversion of Phosphinyl Radi-
cal and Phosphinidene Complexes by Proton Coupled Electron
Transfer. Angew. Chem., Int. Ed. 2019, 58, 6338–6341.
(13) Pagano, J. K.; Ackley, B. J.; Waterman, R. Evidence for Iron-
Catalyzed α-Phosphinidene Elimination with Phenylphosphine.
Chem. - Eur. J. 2018, 24, 2554–2557.
(34) Du¨ck, K.; Rawe, B. W.; Scott, M. R.; Gates, D. P. Polymeriza-
tion of 1-Phosphaisoprene: Synthesis and Characterization of a
Chemically Functional Phosphorus Version of Natural Rubber.
Angew. Chem., Int. Ed. 2017, 56, 9507–9511.
(35) Priegert, A. M.; Rawe, B. W.; Serin, S. C.; Gates, D. P. Polymers
and the p-block elements. Chem. Soc. Rev. 2016, 45, 922–953.
(14) Pal, K.; Hemming, O. B.; Day, B. M.; Pugh, T.; Evans, D. J.;
Layfield, R. A. Iron- and Cobalt-Catalyzed Synthesis of Carbene
Phosphinidenes. Angew. Chem., Int. Ed. 2016, 55, 1690–1693.
(15) Freeman, P. K.; Hutchinson, L. L. Magnesium anthracene dian-
ion. J. Org. Chem. 1983, 48, 879–881.
(16) (a) Velian, A.; Cummins, C. C. Facile Synthesis of Dibenzo-
7λ3-phosphanorbornadiene Derivatives Using Magnesium An-
thracene. J. Am. Chem. Soc. 2012, 134, 13978–13981; (b)
Transue, W. J.; Velian, A.; Nava, M.; Garc´ıa-Iriepa, C.;
Temprado, M.; Cummins, C. C. Mechanism and Scope of
Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene
Compounds. J. Am. Chem. Soc. 2017, 139, 10822–10831; (c)
Transue, W. J.; Yang, J.; Nava, M.; Sergeyev, I. V.; Bar-
num, T. J.; McCarthy, M. C.; Cummins, C. C. Synthetic and
Spectroscopic Investigations Enabled by Modular Synthesis of
Molecular Phosphaalkyne Precursors. J. Am. Chem. Soc. 2018,
140, 17985–17991.
ACS Paragon Plus Environment
4