G Model
CCLET 3839 1–4
4
T.-T. Li et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
2
2
2
2
2
2
2
2
11
12
13
14
15
16
17
18
(
b) S.Y. Dong, B. Zheng, F.H. Huang, et al., Supramolecular polymers
[11] (a) Z.S. Hou, Y.B. Tan, K. Kim, et al., Preparation of novel side-chain
pseudopolyrotaxanes consisting of cucurbituril[6] and polyamine salts,
Chin. Chem. Lett. 16 (2005) 1031–1034;
258
259
260
261
262
263
264
constructed from macrocycle-based host–guest molecular recognition
motifs, Acc. Chem. Res. 47 (2014) 1982–1994;
(
c) G. Yu, K. Jie, F.H. Huang, Supramolecular amphiphiles based on host–guest
molecular recognition motifs, Chem. Rev. 115 (2015) 7240–7303;
d) M.M. Zhang, X.Z. Yan, W. Harry, et al., Stimuli-responsive host–guest
(b) H.Y. Lu, J.R. Li, D.X. Shi, et al., A novel synthesis of nitroform by the nitrolysis
of cucurbituril, Chin. Chem. Lett. 26 (2015) 365–368;
(
(c) J.M. Yi, X. Xiao, Z. Tao, et al., Supramolecular self-assembly of cucurbit[8]uril
0
systems based on the recognition of cryptands by organic guests, Acc. Chem.
Res. 47 (2014) 1995–2005.
5] W.L. Mock, T.A. Irra, T.L. Manimaran, et al., Cycloaddition induced by
cucurbituril: a case of Pauling principle catalysis, J. Org. Chem. 48 (1983)
with 2, 2 -(heptane-1,7-dily) dibenzimidazolium chloride, Acta Chim. Sin. 72
(2014) 949–955;
2
65
[
(d) M. Zhang, J. Gao, Z.Y. Tian, et al., Enhanced dSTORM imaging using
fluorophores interacting with cucurbituri, Sci. China Chem. 59 (2016) 848–
852.
219
20
266
267
2
3
619–3620.
[
6] (a) J.W. Lee, K.P. Kim, K. Kim, et al., Unprecedented host-induced
intramolecular charge-transfer complex formation, Chem. Commun. (2002)
[12] T.Y. Zhang, S.G. Sun, X.J. Peng, et al., Redox-induced partner radical formation
and its dynamic balance with radical dimer in cucurbit[8]uril, Phys. Chem.
Chem. Phys. 11 (2009) 11134–11139.
[13] (a) L. Cera, C.A. Schalley, Stimuli-induced folding cascade of a linear oligomeric
guest chain programmed through cucurbit[n]uril self-sorting (n = 6, 7, 8),
Chem. Sci. 5 (2014) 2560–2567;
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
268
269
2
692–2693;
(
b) M. Pattabiraman, A. Natarajan, V. Ramamurthy, et al., Template directed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
photodimerization of trans-1,2-bis(n-pyridyl)ethylenes and stilbazoles in
water, Chem. Commun. (2005) 4542–4544;
(
c) M. Pattabiraman, L.S. Kaanumalle, V. Ramamurthy, et al., Regioselective
(b) C. Hu, Y. Zheng, O.A. Scherman, et al., Cucurbit[8]uril directed stimuli-
responsive supramolecular polymer brushes for dynamic surface engineering,
Chem. Commun. 51 (2015) 4858–4860;
(c) E. Apple, M.J. Rowland, O.A. Scherman, et al., Enhanced stability and activity
of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]
uril, Chem. Commun. 48 (2012) 9843–9845;
(d) Y.Y. Mao, K. Liu, T. Yi, et al., CB[8] gated photochromism of a diarylethene
derivative containing thiazole orange groups, Chem. Commun. 51 (2015)
6667–6669;
(e) E.A. Apple, J.D. Barrio, O.A. Scherman, et al., Metastable single-chain
polymer nanoparticles prepared by dynamic cross-linking with nor-seco-
cucurbit[10]uril, Chem. Sci. 3 (2012) 2278–2280.
photodimerization of cinnamic acids in water: templation with cucurbiturils,
Langmuir 22 (2006) 7605–7609;
(
d) N. Barooah, B.C. Pemberton, J. Sivaguru, et al., Photodimerization and
complexation dynamics of coumarins in the presence of cucurbit[8]urils,
Photochem. Photobiol. Sci. 7 (2008) 1473–1479;
(
e) L. Lei, L. Luo, C.H. Tung, et al., Cucurbit[8]uril-mediated photodimerization
of alkyl 2-naphthoate in aqueous solution, Tetrahedron Lett. 49 (2008) 1502–
505;
f) X.L. Wu, L. Luo, C.H. Tang, et al., Highly efficient cucurbit[8]uril-templated
1
(
intramolecular photocycloaddition of 2-naphthalene-labeled poly (ethylene
glycol) in aqueous solution, J. Org. Chem. 73 (2008) 491–494;
(
g) B. Chen, S.F. Cheng, L.Z. Wu, et al., Highly efficient cucurbit[8]uril-
templated intramolecular photocycloaddition of 2-naphthalene-labeled poly
ethylene glycol) in aqueous solution, Photochem. Photobiol. Sci. 10 (2011)
441–1444.
[14] (a) S. Choi, S.H. Park, K. Kim, et al., A stable cis-stilbene derivative encapsulated
284
285
286
in cucurbit[7]uril, Chem. Commun. (2003) 2176–2177;
(
1
(b) Y.H. Ko, K. Kim, K.J. Kim, et al., Designed self-assembly of molecular
necklaces using host-stabilized charge-transfer interactions, J. Am. Chem. Soc.
126 (2004) 1932–1937;
(c) Y. Ling, W. Wang, A.E. Kaifer, et al., A new cucurbit[8]uril-based fluorescent
receptor for indole derivatives, Chem. Commun. (2007) 610–612;
(d) W. Ong, A.E. Kaifer, Salt effects on the apparent stability of the
cucurbit[7]uril-methyl viologen inclusion complex, J. Org. Chem. 69 (2004)
1383–1385;
2
87
[
[
7] W. Lali, P. Petrovi ꢀc , J.P. Djukic, et al., The inhibition of iridium-promoted water
oxidation catalysis (WOC) by cucurbit[n]urils, Dalton Trans. 41 (2012) 12233–
2
2
42
43
288
289
12243.
2
90
8] (a) S.Y. Jon, Y.H. Ko, K. Kim, et al., A facile, stereoselective [2 + 2] photoreaction
244
245
246
247
248
249
250
251
252
253
291
292
293
294
295
mediated by cucurbit[8]uril, Chem. Commun. (2001) 1938–1939;
(
b) M. Pattabiraman, A. Pattabiraman, V. Ramamurthy, et al., Templating
photodimerization of trans-cinnamic acids with cucurbit[8]uril and
-cyclodextrin, Org. Lett. 7 (2005) 529–532;
c) R.B. Wang, L. Yuan, D.H. Macartney, et al., Cucurbit[7]uril mediates the
(e) J. Kim, I.S. Jung, K.J. Kim, et al., New cucurbituril homologues: syntheses,
isolation, characterization, and X-ray crystal structures of cucurbit[n]uril
(n = 5, 7, and 8), J. Am. Chem. Soc. 122 (2000) 540–541.
g
(
stereoselective [4 + 4] photodimerization of 2-aminopyridine hydrochloride in
aqueous solution, J. Org. Chem. 71 (2006) 1237–1239;
[15] (a) U. Rauwald, O.A. Scherman, Supramolecular block copolymers with
cucurbit[8]uril in water, Angew. Chem. Int. Ed. 47 (2008) 3950–3953;
(b) W. Wang, A.E. Kaifer, Electrochemical switching and size selection in
cucurbit[8]uril-mediated dendrimer self-assembly, Angew. Chem. Int. Ed. 45
(2006) 7042–7046.
296
297
298
299
(
d) B.C. Pemberton, N. Barooah, J. Sivaguru, et al., Supramolecular
photocatalysis by confinement—photodimerization of coumarins within
cucurbit[8]urils, Chem. Commun. 46 (2010) 225–227.
[
9] A.L. Koner, C. Márquez, W.M. Nau, et al., Chemoselektive photoreaktionen
mithilfe von übergangsmetallen in cucurbiturilen, Angew. Chem. Int. Ed. 50
[16] J.W. Lee, I. Hwang, K. Kim, et al., Synthetic molecular machine based on
reversible end-to-interior and end-to-end loop formation triggered by
electrochemical stimuli, Chem. Asian J. 3 (2008) 1277–1283.
[17] A. Day, A.P. Arnold, B.J. Snushall, et al., Controlling factors in the synthesis of
cucurbituril and its homologues, J. Org. Chem. 66 (2001) 8094–8100.
2
2
54
55
300
301
(
2011) 545–548.
[
10] T. Fuenzalida, D. Fuentealba, A study of the Fenton-mediated oxidation of
2
2
56
57
302
methylene blue–cucurbit[n]uril complexes, Photochem. Photobiol. Sci. 14
(
2015) 686–692.
0
0