Organic Letters
Letter
(3) (a) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937−1945.
(b) Besset, T.; Schneider, C.; Cahard, D. Angew. Chem., Int. Ed. 2012,
51, 5048−5050; Angew. Chem. 2012, 124, 5134−5136. (c) Wang, W.-
iododifluoroalkylation product 2a. Alternatively, the photo-
excitation of 2a could also generate vinylic radical B, to
undergo hydrogen abstraction from THF to provide the
hydrodifluoroalkylation product 3a. In the case of an alkene,
the benzylic radical C is formed by the addition of the
difluoroalkyl radical A to styrene. Subsequently, benzyl radical
C abstract an iodine atom from ethyl difluoroiodoacetate to
give the iododifluoroalkylation intermediate D, which finally
transforms into the difluoroalkylation product 5a by HI
elimination.
In summary, a method of the generation of difluoroalkyl
radical was established by direct photoexcitation of ethyl
difluoroiodoacetate. The catalyst- and oxidant-free conditions
were successfully applied to alkynes and alkenes to afford the
iododifluoroalkylation products and the difluoroalkylation
products, respectively. By fine turning the reaction solvent,
the hydrodifluoroalkylation of alkynes was also developed. The
control experiments have revealed that the iododifluoroalky-
lation product could serve as the intermediate in the
hydrodifluoroalkylation reaction with THF as the hydrogen
donor.
Q.; Yu, Q.-W.; Zhang, Q.; Li, J.-W.; Hui, F.; Yang, J.-M.; Lu, J. Youji
̈
Huaxue 2018, 38, 1569−1585. (d) Zhang, Y.; Ye, S.-Y.; Ji, M.-M.; Li,
L.-S.; Guo, D.-M.; Zhu, G.-G. J. Org. Chem. 2017, 82, 6811−6818.
(4) (a) Feng, Z.; Xiao, Y.-L.; Zhang, X.-G. Acc. Chem. Res. 2018, 51,
2264−2278. (b) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P.
Green Chem. 2018, 20, 1662−1731.
(5) (a) Wu, G.-J.; von Wangelin, A. J. Chem. Sci. 2018, 9, 1795−
1802. (b) Xu, T.; Cheung, C. W.; Hu, X.-L. Angew. Chem., Int. Ed.
2014, 53, 4910−4914; Angew. Chem. 2014, 126, 5010−5014. (c) Li,
G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org.
Lett. 2016, 18, 4806−4809. (d) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li,
Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491−3495;
Angew. Chem. 2016, 128, 3552−3556. (e) Wang, X.-Y.; Zhao, S.; Liu,
J.; Zhu, D.-S.; Guo, M.-J.; Tang, X.-Y.; Wang, G.-W. Org. Lett. 2017,
19, 4187−4190. (f) Feng, Z.; Min, Q.-Q.; Zhao, H.-Y.; Gu, J.-W.;
Zhang, X.-G. Angew. Chem., Int. Ed. 2015, 54, 1270−1274; Angew.
Chem. 2015, 127, 1286−1290. (g) Wang, Q.; Zheng, L.; He, Y.-T.;
Liang, Y.-M. Chem. Commun. 2017, 53, 2814−2817. (h) He, Y.-T.; Li,
L.-H.; Wang, Q.; Wu, W.-S.; Liang, Y.-M. Org. Lett. 2016, 18, 5158−
5161. (i) Xiong, H.-G.; Li, Y.-J.; Qian, B.; Wei, R.-B.; Van der Eycken,
E. V.; Bao, H.-L. Org. Lett. 2019, 21, 776−779. (j) Zhang, P.-B.; Ying,
J.-X.; Tang, G.; Zhao, Y.-F. Org. Chem. Front. 2017, 4, 2054−2057.
(k) Ma, J.-J.; Yi, W.-B. Org. Biomol. Chem. 2017, 15, 4295−4299.
(l) Li, D.-K.; Mao, T.-T.; Huang, J.-B.; Zhu, Q. J. Org. Chem. 2018,
83, 10445−10452. (m) Feng, X.-R.; Wang, X.-Y.; Chen, H.-T.; Tang,
X.-Y.; Guo, M.-J.; Zhao, W.-T.; Wang, G.-W. Org. Biomol. Chem.
2018, 16, 2841−2845. (n) Deng, W.-L.; Li, Y.-J.; Li, Y.-G.; Bao, H.-L.
Synthesis 2018, 50, 2974−2980.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge at
Experimental procedures and characterization data
(6) (a) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson,
C. R. J. J. Am. Chem. Soc. 2012, 134, 8875−8884. (b) Zhong, J.-J.;
Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Chem. Commun.
2017, 53, 8948−8951. (c) Mizuta, S.; Verhoog, S.; Engle, K. M.;
Khotavivattana, T.; O’Duill, M.; Wheelhouse, K.; Rassias, G.;
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
́
Medebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135,
2505−2508. (d) Iqbal, N.; Jung, J.; Park, S.; Cho, E. Angew. Chem.,
Int. Ed. 2014, 53, 539−542. (e) Rawner, T.; Lutsker, E.; Kaiser, C. A.;
Reiser, O. ACS Catal. 2018, 8, 3950−3956. (f) Yu, C.; Iqbal, N.; Park,
S.; Cho, E. Chem. Commun. 2014, 50, 12884−12887. (g) Yajima, T.;
Ikegami, M. Eur. J. Org. Chem. 2017, 2017, 2126−2129. (h) Li, L.-X.;
Ma, Y.-N.; Tang, M.; Guo, J.; Yang, Z.; Yan, Y.-Z.; Ma, X.-T.; Tang, L.
Adv. Synth. Catal. 2019, 361, 3723−3728. (i) Liu, Y.; Chen, X.-L.;
Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu, L.-B.; Zhao, Y.-F.; Yu,
B. Org. Lett. 2019, 21, 4019−4024. (j) Zeng, F.-L.; Sun, K.; Chen, X.-
L.; Yuan, X.-Y.; He, S.-Q.; Liu, Y.; Peng, Y.-Y.; Qu, L.-B.; Lv, Q.-Y.;
Yu, B. Adv. Synth. Catal. 2019, 361, 5176−5181.
Author Contributions
§K.-K.L. and X.-X.Z. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(7) (a) Fang, X.; Yang, X.-Y.; Yang, X.-J.; Mao, S.-J.; Wang, Z.-H.;
Chen, G.-R.; Wu, F.-H. Tetrahedron 2007, 63, 10684−10692.
(b) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Adv.
Synth. Catal. 2002, 344, 261−265. (c) Jennings, M. P.; Cork, E. A.;
Ramachandran, P. V. J. Org. Chem. 2000, 65, 8763−8766. (d) Li, Y.;
Li, H.; Hu, J. Tetrahedron 2009, 65, 478−483. (e) Wang, D.-F.; Wu,
J.-J.; Huang, J.-W.; Liang, J.-Q.; Peng, P.; Chen, H.; Wu, F.-H.
Tetrahedron 2017, 73, 3478−3484.
(8) (a) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. J. Org.
Chem. 2014, 79, 7205−7211. (b) Fujikawa, K.; Fujioka, Y.;
Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560−5563. (c) Sun,
X.-Y.; Yu, S.-Y. Org. Lett. 2014, 16, 2938−2941. (d) Liang, J.-Q.;
Huang, G.-Z.; Peng, P.; Zhang, T.-Y.; Wu, J.-J.; Wu, F.-H. Adv. Synth.
Catal. 2018, 360, 2221−2227.
We are grateful to the National Natural Science Foundation of
China (21961045, 21572198), the Applied Basic Research
Project of Yunnan Province (2017FA004, 2018FB021), the
Department of Education of Yunnan Province (2019Y0198),
and Yunnan Provincial Key Laboratory Construction Plan
Funding of Universities for their financial support.
REFERENCES
■
(1) (a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308−319. (b) Furuya,
T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470−477.
(c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111,
4475−4521.
(2) (a) Purser, S. P.; Moore, R.; Swallow, S.; Gouverneur, V. Chem.
(9) Selected reviews: (a) Prier, C. K.; Rankic, D. A.; MacMillan, D.
W. C. Chem. Rev. 2013, 113, 5322−5363. (b) Tucker, J. W.;
Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617−1622. (c) Shi, L.;
Xia, W.-J. Chem. Soc. Rev. 2012, 41, 7687−7697. (d) Bach, T.; Hehn,
J. P. Angew. Chem., Int. Ed. 2011, 50, 1000−1045. (e) Yoon, T. P.;
Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527−532.
Soc. Rev. 2008, 37, 320−330. (b) Muller, K.; Faeh, C.; Diederich, F.
̈
Science 2007, 317, 1881−1886. (c) Hagmann, W. K. J. Med. Chem.
2008, 51, 4359−4369. (d) Wang, J.; Sanchez-Rosello, M.; Acena, J.
L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.;
Liu, H. Chem. Rev. 2014, 114, 2432−2506. (e) Romanenko, V.;
Kukhar, P. Chem. Rev. 2006, 106, 3868−3935.
D
Org. Lett. XXXX, XXX, XXX−XXX