C O M M U N I C A T I O N S
two distinct classes of substrates; the class I substrates have been
reported in the literature,3,5,6 but the class II peptides have not
previously been recognized.
A dozen or so proteins have been reported as PTP1B substrates
in vivo.12 The pY sites recognized by PTP1B have been identified
in a few of these proteins. The majority of the pY sites including
those in insulin receptor,13 JAK2,14 and Tyk2 kinases14 contain (E/
D)(Y/pY)pY motifs and belong to class I substrates. STAT5a, a
transcription factor involved in cytokine receptor signaling, contains
a class II motif, KAVDGpY694VKP.15 These data suggest that both
classes of substrates selected from the peptide library are physi-
ologically relevant.
In summary, a novel combinatorial library method has been
developed to systematically assess the substrate specificity of PTPs.
Application of the method to PTP1B has revealed that its active
site can recognize at least two distinct classes of substrates, one of
which was previously unknown. Sequence specificity data of this
type should be useful for predicting the protein substrates of PTPs
and guiding the design of specific PTP inhibitors.
Acknowledgment. This work was supported by the National
Institutes of Health (Grant GM062820).
Supporting Information Available: Experimental details, peptide
sequences, HPLC and MS analysis results. This material is available
References
(1) Zhang, Z.-Y. CRC Crit. ReV. Biochem. Mol. Biol. 1998, 33, 1.
(2) (a) Tonks, N. K.; Neel, B. G. Curr. Opin. Cell Biol. 2001, 13, 182. (b)
Tiganis, T.; Bennett, A. M. Biochem. J. 2007, 402, 1.
(3) For examples see: (a) Cho, H.; Krishnaraj, R.; Itoh, M.; Kitas, E.;
Bannwarth, W.; Saito, H.; Walsh, C. T. Protein Sci. 1993, 2, 977. (b)
Zhang, Z.-Y.; Maclean, D.; McNamara, D. J.; Sawyer, T. K.; Dixon, J.
E. Biochemistry 1994, 33, 2285. (c) Harder, K. W.; Owen, P.; Wong, L.
K. H.; Aebersold, R.; Clark-Lewis, I.; Jirik, F. R. Biochem. J. 1993, 298,
395. (d) Dechert, U.; Affolter, M.; Harder, K. W.; Matthews, J.; Owen,
P.; Clark-Lewis, I.; Thomas, M. L.; Aebersold, R.; Jirik, F. R. Eur. J.
Biochem. 1995, 231, 673.
(4) (a) Jia, Z.; Barford, D.; Flint, A. J.; Tonks, N. K. Science 1995, 268,
1754. (b) Yang, J.; Cheng, Z.; Niu, T.; Liang, X.; Zhao, Z. J.; Zhou, G.
W. J. Biol. Chem. 2000, 275, 4066.
(5) (a) Pellegriini, M. C.; Liang, H.; Mandiyan, S.; Wang, K.; Yuryev, A.;
Vlattas, I.; Sytwu, T.; Li, Y.-C.; Wennogle, L. P. Biochemistry 1998, 37,
15598. (b) Huyer, G.; Kelly, J.; Moffat, J.; Zamboni, R.; Jia, Z.; Gresser,
M. J.; Ramachandra, C. Anal. Biochem. 1998, 258, 19. (c) Walchli, S.;
Espanel, X.; Harrenga, A.; Rossi, M.; Cesareni, G.; van Huijsduiinen, R.
H. J. Biol. Chem. 2004, 279, 311.
(6) Other library methods applied to PTP include: (a) Vetter, S. W.; Keng,
Y.-F.; Lawrence, D. S.; Zhang, Z.-Y. J. Biol. Chem. 2000, 275, 2265. (b)
Wang, P.; Fu, H.; Snavley, D. F.; Freitas, M. A.; Pei, D. Biochemistry
2002, 41, 10700. (c) Cheung, Y. W.; Abell, C.; Balasubramanian, S. J.
Am. Chem. Soc. 1997, 119, 9568.
(7) Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy,
A. L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C. C.;
Ramachandran, C.; Gresser, M. J.; Tremblay, M. L.; Kennedy, B. P.
Science 1999, 283, 1544.
Figure 2. Sequence specificity of PTP1B. Displayed are the amino acids
identified at each position from -5 to -1 relative to pY (position 0). Number
of occurrences on the y-axis represents the number of selected sequences
that contain a particular amino acid at a certain position: (closed bar) class
I substrates, (open bar) class II substrates, (M) norleucine.
Table 1. Catalytic Constants of PTP1B against Selected Peptides
1
1
peptide
bead color
k
cat (s-
)
KM
(µ
M)
k
cat/KM (M-1 s-
)
KAVFIpYAA
RTINEpYAA
RTIEWpYAA
QEDEPpYAA
EHTGHpYAA
DHVTQpYAA
RLKQQpYAA
intense
intense
intense
intense
medium
light
16 ( 2
13 ( 1
7.8 ( 0.1
8.3 ( 0.6
14 ( 2
23 ( 6
17 ( 2
26 ( 1
20 ( 5
290 ( 70
>200
700000
765000
300000
420000
47000
550
colorless
>200
138
sequences reveal that PTP1B accepts a wide variety of peptides as
substrates (albeit less efficiently), but has a general preference for
acidic residues N-terminal to pY (Figure S4 in Supporting Informa-
tion). To identify peptides that are resistant to PTP1B action, library
A (10 mg) was treated exhaustively with PTP1B, and 50 of the
colorless beads (∼40% of all beads) were randomly selected and
sequenced (Table S8 in Supporting Information). None of the
resistant peptides contained Trp at pY-1 position, and only five
peptides had a single acidic residue.
Seven representative peptides from different color categories were
individually synthesized, purified, and assayed against PTP1B in
solution (pH 7.4). All four peptides derived from intensely colored
beads are excellent substrates of PTP1B, with kcat/KM values in the
range of 3-8 × 105 M-1 s-1 (Table 1). There is a general
correlation between the color intensity of a bead and the kinetic
constants (kcat/KM) of the peptide it carries. Thus, PTP1B recognizes
(8) Chen, T.; Vazquez-Duhalt, R.; Wu, C.-F.; Bentley, W. E.; Payne, G. F.
Biomacromol. 2001, 2, 456.
(9) (a) Lam, K. S.; Salmon, S. E.; Hersh, E. M.; Hruby, V. J.; Kazmierski,
W. M.; Knapp, R. J. Nature 1991, 354, 82. (b) Houghten, R. A.; Pinilla,
C.; Blondelle, S. E.; Appel, J. R.; Dooley, C. T.; Cuervo, J. H. Nature
1991, 354, 84.
(10) Sweeney, M. C.; Wavreille, A.-S.; Park, J.; Butchar, J. P.; Tridandapani,
S.; Pei, D. Biochemistry 2005, 44, 14932.
(11) Thakkar, A.; Wavreille, A.-S.; Pei, D. Anal. Chem. 2006, 78, 5935.
(12) Bourdeau, A.; Dube, N.; Tremblay, M. L. Curr. Opin. Cell Biol. 2005,
17, 203.
(13) Bandyopadhyay, D.; Kusari, A.; Kenner, K. A.; Liu, F.; Chernoff, J.;
Gustafson, T. A.; Kusari, J. J. Biol. Chem. 1997, 272, 1639.
(14) Myers, M. P.; Andersen, J. A.; Cheng, A.; Tremblay, M. L.; Horvath, C.
M.; Parisien, J.-P.; Salmeen, A.; Barford, D.; Tonks, N. K. J. Biol. Chem.
2001, 276, 47771.
(15) Akoi, N.; Matsuda, T. J. Biol. Chem. 2000, 275, 39718.
JA071275I
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5367