Please d Co hne omt Ca do j mu s mt margins
Page 4 of 4
COMMUNICATION
Journal Name
014, , 7506-7510; (d) K. Sakaushi, E. Hosono, G. Nickerl, H.
Zhou, S. Kaskel and J. Eckert, J. Power Sources 2014, 245, 553-
56; (e) S. Zhang, W. Huang, P. Hu, C. Huang, C. Shang, C.
Zhang, R. Yang and G. Cui, J. Mater. Chem. A 2015, , 1896-
charge transfer resistances of 93 and 165 Ω, respectively. (Fig.
2
4
DOI: 10.1039/C7CC03343E
5
e) The enhanced charge transfer ability of H-MTPN-TCNE,
compared with H-MTPN can be attributed to the incorporation
of additional redox active moieties to H-MTPN. The
microscopic analysis on the H-MTPN-TCNE recovered after
cycles showed the complete maintenance of original hollow
morphologies, indicating the robustness of MON materials.
5
3
1901; (f) C. Zhang, X. Yang, W. Ren, Y. Wang, F. Su and J. –X.
Jiang, J. Power Sources 2016, 317, 49-56; (g) W. Zhou, H. Cao
and J. B. Goodenough, Adv. Energy Mater. 2016,
501802l.
6, 1501802-
1
(
Refer to SEM and TEM images in Figs. S8-9 in the ESI)
In conclusion, this work shows that the hollow and redox
8
(a) J. Chun, S. Kang, N. Park, E. J. Park, X. Jin, K. –D. Kim, H.
O. Seo, S. M. Lee, H. J. Kim, W. H. Kwon, Y. –K. Park, J. M.
active MON materials can be applied as electrode materials for
lithium ion batteries. Moreover, the post-modification of MONs
with redox active species can further enhance the
electrochemical performance. The post-synthetic strategy in
this work can be applied to various MON materials which
have been prepared by the Sonogashira coupling. Thus, we
believe that electrochemical performance can be further
improved through the screening of building blocks.
Kim, Y. D. Kim and S. U. Son, J. Am. Chem. Soc. 2014, 136
786-6789; (b) J. Chun, J. H. Park, J. Kim, S. M. Lee, H. J. Kim
and S. U. Son, Chem. Mater. 2012, 24, 3458-3463.
N. Kang, J. H. Park, M. Jin, N. Park, S. M. Lee, H. J. Kim, J. M.
Kim and S. U. Son, J. Am. Chem. Soc. 2013, 135, 19115-19118.
0 K. Cho, J. Yoo, H. –W. Noh, S. M. Lee, H. J. Kim, Y. –J. Ko, H.
,
6
9
1
1
1
1
5
–Y. Jang and S. U. Son, J. Mater. Chem. A 2017,
1 X. Wang, J. Feng, Y. Bai, Q. Zhang and Y. Yin, Chem. Rev.
016, 116, 10983-11060.
5, 8922-8926.
2
2 (a) J. K. Peng, Y. L. Cao, X. P. Ai and H. X. Yang, J. Power
Sources 2008, 177, 199-204; (b) C. Su, Y. Ye, L. Xu and C.
Zhang, J. Mater. Chem. 2012, 22, 22658-22662; (c) C. Su, F.
Acknowledgements
Yang, L. Ji, L. Xu and C. Zhang, J. Mater. Chem. A 2014,
0083-20088; (d) J. Xiang, R. Burges, B. H upler, A. Wild, U. S.
Schubert, C. –L. Ho and W. –Y. Wong, Polymer 2015, 68, 328-
34.
KBSI (R&D Convergence Program) of National Research Council 13 Y. Hanyu and I. Honma, Sci. Rep. 2012,
2,
This work was supported by Basic Science Research Program
2
ä
(
2016R1E1A1A01941074) through the NRF funded by the Ministry
of Science, ICT and Future Planning and the grants CAP-15-02-
3
2
, 453-458.
of Science & Technology (NST) of Korea.
14 (a) K. S. Park, Z. Ni, A. P. Cȏté, J. Y. Choi, R. Huang, F. J.
Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Proc. Natl.
Acad. Sci. U. S. A. 2006, 103, 10186-10191; (b) N. L. Torad, M.
Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito and Y. Yamauchi,
Chem. Commun. 2013, 49, 2521-2523; (c) L. He, L. Li, S. Zhang,
S. Xing, T. Wang, G. Li, X. Wu, Z. Su and C. Wang,
CrystEngComm, 2014, 16, 6534-6537.
Notes and references
a.
Korea Basic Science Institute, Daejeon 34133, Korea
Laboratory of Nuclear Magnetic Resonance, NCIRF, Seoul National
b.
c.
15 J. –X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H.
Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z.
University, Seoul 08826, Korea
‡
These authors contributed equally to this work.
Khimyak and A. I. Cooper, Angew. Chem., Int. Ed. 2007, 46,
†
Electronic Supplementary Information (ESI) available: Synthetic
8574-8578.
procedure, characterization of new compounds, cyclovoltammograms, 16 (a) W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei and H. –C.
and SEM images of H-MTPN-TCNE recovered after cycles. See
DOI: 10.1039/x0xx00000x
Xhou, Angew. Chem. Int. Ed. 2012, 51, 7480-7484; (b) H. A.
Patel and C. T. Yavuz, Chem. Commun. 2012, 48, 9989-9991; (c)
B, Kiskan and J. Weber, ACS Macro Lett. 2012,
Thiel, R. Zehbe, J. Roeser, P. Strauch, S. Enthaler and A.
Thomas, Polym. Chem. 2013, , 1848-1856.
, 2280-2301; (c) T. B. Schon, B. T. McAllister, P. –F. Li 17 (a) T. Michinobu, C. Seo, K. Noguchi and T. Mori, Polym. Chem.
1, 37-40; (d) K.
1
Reviews: (a) Y. Liang, Z. Tao and J. Chen, Adv. Energy Mater.
2
2
012,
013,
2
6
, 742-769; (b) Z. Song and H. Zhou, Energy Environ. Sci.
4
and D. S. Seferos, Chem. Soc. Rev. 2016, 45, 6345-6404.
Review: Y. Zhang, J. Wang and S. N. Riduan, J. Mater. Chem. A.
2012,
Gisselbrecht, W. B. Schweizer and F. Diederich, Eur. I. Org.
Chem. 2013, , 869-879.
(a) M. Armand and J. –M. Tarascon, Nature 2008, 451, 652-657; 18 The CN vibration peaks of tetracyanobutadiene derivatives
3, 1427-1435; (b) A. R. Lacy, A. Vogt, C. Boudon, J. –P.
2
3
2
016,
4
, 14902-14914.
5
-
1
(
b) M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribi
Poizot and J. –M. Tarascon, Nat. Mater. 2009, , 120-125.
S. Muench, A. Wild, C. Friebe, B. H upler, T. Janoschka and U.
è
re, P.
appeared in a range of 2220~2222 cm in the literature. T. Shoji,
S. Ito, K. Toyota, M. Yasunami and N. Morita, Chem. Eur. J.
2008, 14, 8398-8408.
8
4
5
ä
1
3
S. Schubert, Chem. Rev. 2016, 116, 9438-9484.
Reviews: (a) Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Chem.
Soc. Rev. 2013, 42, 8012-8031; (b) R. Dawson, A. I. Cooper and
19 The C peaks of butadiene moieties in tetracyanobutadiene
derivatives appeared at 88~89 and 164~167 ppm in the literature.
Refer to ref. 14b.
D. J. Adams, Prog. Poly. Sci. 2012, 37, 530-563; (c) F. Vilela, K. 20 Considering the 4.3w% N in H-MTPN and 43.7w% N in TCNE,
Zhang and M. Antonietti, Energy Environ. Sci. 2012,
5
, 7819-
832; (d) A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328-
344; (e) N. B. McKeown and P. M. Budd, Chem. Soc. Rev. 2006,
, 675-683.
the 10.9w% in H-MTPN-TCNE was analyzed to 3.6w% N from
triphenylamine and 7.3w% N from TCNE. Thus, the amounts of
triphenylamine, alkynes, and the added TCNE were calculated to
2.6, 3.8 and 1.3 mmol/g, respectively.
7
8
3
5
6
7
N. Kang, J. H. Park, J. Choi, J. Jin, J. Chun, I. G. Jung, J. Jeong, J. 21 T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H.
–
G. Park, S. M. Lee, H. J. Kim and S. U. Son, Angew. Chem. Int.
Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama
Ed. 2012, 51, 6626-6630.
and J. –I. Yoshida, J. Am. Chem. Soc. 2012, 134, 19694-19700.
(a) K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou, S. 22 The theoretical capacities are based on one-electron redox
Kaskel and J. Eckert, Nat. Commun. 2013,
Xu, X. Chen, Z. Tang, D. Wu, R. Fu and D. Jiang, Chem.
Commun. 2014, 50, 4788-4790; (c) D. Tian, H. –Z. Zhang, D. –S.
4
, 1485-1491; (b) F.
process of triphenylamine moieties and two-electron redox
process of tetracyanobutadiene moieties.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins