G
A. Farre et al.
Special Topic
Synthesis
Supporting Information
M. E., Ed.; American Chemical Society: Washington D.C., 1997.
(e) Liu, S.; Kumatabara, Y.; Shirakawa, S. Green Chem. 2016, 18,
331.
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(5) Price obtained from the Sigma Aldrich website (22/09/2016) for
a 100 g bottle: TBAF·H2O £233.50, TBACl £164.50, TBABr £55.00,
TBAI £28.40.
(6) McMurry, J. E. Organic Chemistry with Biological Applications;
Cengage Learning: Stanford USA, 2015, 394.
References
(1) (a) Boronic Acids: Preparation and Applications in Organic Syn-
thesis, Medicine and Materials; Hall, D. G., Ed.; Wiley-VCH:
Weinheim, 2006. (b) Synthesis and Application of Organoboron
Compounds, Topics in Organometallic Chemistry 49; Fernández,
E.; Whiting, A., Eds.; Springer: Switzerland, 2015. (c) Mkhalid, I.
A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F.
Chem. Rev. 2010, 110, 890. (d) Neeve, E. C.; Geier, S. J.; Mkhalid, I.
A. I.; Westcott, S. A.; Marder, T. B. Chem. Rev. 2016, 116, 9091.
(2) For examples of the transition-metal-free activation of dibo-
ronic esters, see: (a) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J.
Am. Chem. Soc. 2009, 131, 7253. (b) Lee, K.-s.; Zhugralin, A. R.;
Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 12766. (c) Kleeberg,
C.; Crawford, A. G.; Batsanov, A. S.; Hodgkinson, P.; Apperley, D.
C.; Cheung, M. S.; Lin, Z.; Marder, T. B. J. Org. Chem. 2012, 77,
785. (d) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem. Int. Ed.
2010, 49, 5130. (e) Bonet, A.; Pubill-Ulldemolins, C.; Bo, C.;
Gulyás, H.; Fernández, E. Angew. Chem. Int. Ed. 2011, 50, 7158.
(f) Bonet, A.; Solé, C.; Gulyás, H.; Fernández, E. Org. Biomol.
Chem. 2012, 10, 6621. (g) Pubill-Ulldemolins, C.; Bonet, A.; Bo,
C.; Gulyás, H.; Fernández, E. Chem. Eur. J. 2012, 18, 1121.
(h) Sanz, X.; Lee, G. M.; Pubill-Ulldemolins, C.; Bonet, A.; Gulyás,
H.; Westcott, S. A.; Bo, C.; Fernández, E. Org. Biomol. Chem. 2013,
11, 7004. (i) Zhang, J. M.; Wu, H. H.; Zhang, J. L. Eur. J. Org. Chem.
2013, 6263. (j) Blaisdell, T. P.; Caya, T. C.; Zhang, L.; Sanz-Marco,
A.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 9264. (k) Pietsch, S.;
Neeve, E. C.; Apperley, D. C.; Bertermann, R.; Mo, F.; Qiu, D.;
Cheung, M. S.; Dang, L.; Wang, J.; Radius, U.; Lin, Z.; Kleeberg, C.;
Marder, T. B. Chem. Eur. J. 2015, 21, 7082. (l) Zheng, J.; Wang, Y.;
Li, Z. H.; Wang, H. Chem. Commun. 2015, 51, 5505.
(m) Yoshimura, A.; Takamachi, Y.; Han, L.; Ogawa, A. Chem. Eur.
J. 2015, 21, 13930. (n) Miralles, N.; Alam, R.; Szabó, K. J.;
Fernández, E. Angew. Chem. Int. Ed. 2016, 55, 4303. (o) Fang, L.;
Yan, L.; Haeffner, F.; Morken, J. P. J. Am. Chem. Soc. 2016, 138,
2508. (p) Yanga, K.; Song, Q. Green Chem. 2016, 18, 932. (q) Gao,
M.; Thorpe, S. B.; Santos, W. L. Org. Lett. 2009, 11, 3478. (r) Cid,
J.; Carbó, J. J.; Fernández, E. Chem. Eur. J. 2014, 20, 3616.
(s) Cuenca, A. B.; Cid, J.; García-López, D.; Carbó, J. J.; Fernández,
E. Org. Biomol. Chem. 2015, 13, 9659. (t) Miralles, N.; Cid, J.;
Cuenca, A. B.; Carbó, J. J.; Fernández, E. Chem. Commun. 2015,
51, 1693. (u) Kojima, C.; Lee, K.; Lin, Z.; Yamashita, M. J. Am.
Chem. Soc. 2016, 138, 6662. (v) Farre, A.; Soares, K.; Briggs, R. A.;
Balanta, A.; Benoit, D. M.; Bonet, A. Chem. Eur. J. 2016, 22, 17552.
(7) McElroy, C. R.; Constantinou, A.; Jones, L. C.; Summerton, L.;
Clark, J. H. Green Chem. 2015, 17, 3111.
(8) Hargreaves, C. R.; Manley, J. B. ACS GCI Pharmaceutical Round-
table, Collaboration to Deliver a Solvent Selection Guide for the
Pharmaceutical
Industry;
tent/dam/acsorg/greenchemistry/industriainnovation/roundta-
ble/solvent-selection-guide.pdf (accessed 03/11/2016).
(9) (a) Jiménez-González, C.; Constable, D. J. C.; Ponder, C. S. Chem.
Soc. Rev. 2012, 41, 1485. (b) Raymond, M. J.; Slater, C. S.;
Savelski, M. J. Green Chem. 2010, 12, 1826. (c) Prat, D.; Hayler, J.;
Wells, A. Green Chem. 2014, 16, 4546.
(10) Organic Reactions in Water; Lindstrom, U. M., Ed.; Wiley-Black-
well: Oxford, 2007.
(11) (a) Chea, H.; Sim, H. S.; Yun, J. Bull. Korean Chem. Soc. 2010, 31,
551. (b) Thorpe, S. B.; Calderone, J. A.; Santos, W. L. Org. Lett.
2012, 14, 1918. (c) Molander, G. A.; McKee, S. A. Org. Lett. 2011,
13, 4684. (d) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Asian J.
2014, 9, 179. (e) Kitanosono, T.; Xu, P.; Kobayashi, S. Chem.
Commun. 2013, 49, 8184. (f) Stavber, G.; Casar, Z. Appl.
Organomet. Chem. 2013, 27, 159.
(12) Jovanović, J.; Rebrov, E. V.; Nijhuis, T. A.; Hessel, V.; Schouten, J.
C. Ind. Eng. Chem. Res. 2010, 49, 2681.
(13) Trost, B. M. Science 1991, 254, 1471.
(14) (a) Constable, D. J. C.; Curzons, A. D.; Cunningham, V. L. Green
Chem. 2002, 4, 521. (b) Andraos, J. Org. Process Res. Dev. 2005, 9,
149. (c) Andraos, J. Org. Process Res. Dev. 2005, 9, 404.
(15) For examples of consecutive reactions using catechol diborated
intermediates, see: (a) Mlynarski, S. N.; Schuster, C. H.; Morken,
J. P. Nature 2014, 505, 386. (b) Bonet, A.; Gulyás, H.; Koshevoy, I.
O.; Estevan, F.; Sanaú, M.; Ubeda, M. A.; Fernández, E. Chem. Eur.
J. 2010, 16, 6382.
ersci.com/ (02/11/2016): NaI 99.5% purity $58.37, MePPh3I 98%
purity $141.11.
(17) Hargreaves, C. R.; Crafts, P. (AstraZeneca, Macclesfield, UK)
Reducing the energy burden of active pharmaceutical manufac-
ture. Presented at the 11th Annual Green Chemistry and Engi-
neering Conference, Washington, DC, June 26-29, 2007; poster
104.
(18) For some representative examples of lithiation–borylation, see:
(a) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.
Nature 2008, 456, 778. (b) Schmidt, F.; Keller, F.; Vedrenne, E.;
Aggarwal, V. K. Angew. Chem. Int. Ed. 2009, 48, 1149.
(c) Dutheuil, G.; Webster, M. P.; Worthington, P. A.; Aggarwal, V.
K. Angew. Chem. Int. Ed. 2009, 48, 6317. (d) Althaus, M.;
Mahmood, A.; Ramón Suárez, J.; Thomas, S. P.; Aggarwal, V. K. J.
Am. Chem. Soc. 2010, 132, 4025. (e) Watson, C. G.; Balanta, A.;
Elford, T. G.; Essafi, S.; Harvey, J. N.; Aggarwal, V. K. J. Am. Chem.
Soc. 2014, 136, 17370. (f) Burns, M.; Essafi, S.; Bame, J. R.; Bull, S.
P.; Webster, M. P.; Balieu, S.; Dale, J. W.; Butts, C. P.; Harvey, J.
N.; Aggarwal, V. K. Nature 2014, 513, 183. (g) Fawcett, A.;
Nitsch, D.; Ali, M.; Bateman, J. M.; Myers, E. L.; Aggarwal, V. K.
Angew. Chem. Int. Ed. 2016, 55, 14663.
(3) For
a
complete review of sp2–sp3 boryl chemistry, see:
(a) Dewhurst, R. D.; Neeve, E. C.; Braunschweig, H.; Marder, T. B.
Chem. Commun. 2015, 51, 9594. (b) Cid, J.; Gulyás, H.; Carbó, J. J.;
Fernández, E. Chem. Soc. Rev. 2012, 41, 3558.
(4) For reviews of phase-transfer catalysis, see: (a) Dehmlow, E. V.;
Dehmlow, S. S. Phase Transfer Catalysis; VCH: Weinheim, 1993,
3rd ed. (b) Starks, M.; Liotta, C. L.; Halpern, M. Phase-Transfer
Catalysis; Chapman & Hall: New York, 1994. (c) Sasson, Y.;
Neumann, R. Handbook of Phase-Transfer Catalysis; Blackie Aca-
demic & Professional: London, 1997. (d) Phase-Transfer Catalysis
Mechanisms and Synthesis, ACS Symposium Series 659; Halpern,
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2017, 49, A–H