Journal of the American Chemical Society
COMMUNICATION
Round graphene nanodisks of ∼60 nm diameter can also be
observed in the TEM image (Figure 2D).
1355. R.L. and D.W. gratefully acknowledge the National Natural
Science Foundation of China (20903066 and 21102091) and
Shanghai Pujiang Program (11PJ1403600 and 11PJ1405400) for
financial support.
According to the WAXS patterns of the artificial graphite
(Figure 1), the temperature of the thermal treatment is very
important for reorganizing 1 into more ordered architectures,
which subsequently decides the morphology of the graphene
nanodisks. With the elevated pyrolysis temperature, the contin-
uous graphitic domains in the artificial graphite grow gradually by
fusing 1 with neighboring molecules at different directions in-
plane. This might be the reason for the formation of round
nanodisks from AG-1200.
’ REFERENCES
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang,
Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(2) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
(3) Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Science
2008, 319, 1229.
The optical properties of GQDs hold the key for their future
applications in optoelectronic devices7,9 and biological sensors.
With this in mind, we recorded the UVÀvis absorption and PL
emission spectra of GQD-1200. The GQD-1200 suspension
shows a broad UVÀvis absorption with a weak shoulder at
280 nm (Figure 3), similar to chemically reduced graphene.18
Subsequent PL characterization indicated that the GQDs can
emit strong blue PL under excitation at 365 nm. As shown in
Figure 3, GQD-1200 exhibits an excitation-dependent PL beha-
vior, very similar to previously reported GQDs.6À9 When the
excitation wavelength changes from 320 to 480 nm, the PL peak
correspondingly shifts from 430 (violet) to 560 nm (yellow).
The most intense PL from the nanodisks appears under 400 nm
excitation and has a maximum at 510 nm. The bright and colorful
PL may be attributed to the chemical nature of the graphene
edges,6À9 although the exact mechanisms responsible for the PL
from GQDs, especially blue to ultraviolet emission, remain to be
elucidated.19 The quantum yield at 400 nm excitation was
calculated to be ∼3.8% by calibrating against quinine sulfate.20
The suspension of graphene nanodisks also shows extra-high
stability. Even after being kept for 1 year in air at room temper-
ature, it still exhibits a transparent appearance and strong PL,
which offers another advantage for its future applications.
In conclusion, we have developed an unprecedented strategy
to prepare multicolor PL GQDs with a uniform size of ∼60 nm
diameter and 2À3 nm thickness by using unsubstituted HBC as
the precursor. For the first time, our results demonstrate that
GQDs with ordered morphology can be obtained by pyrolysis
and exfoliation of large PAHs, and the morphology of the GQDs
can be influenced by the pyrolysis temperature. It is expected that
the shape, size, and composition of the GQDs from this method
can be further controlled by using different aromatic molecules,
and such work is now under way in our laboratory.
(4) Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.;
Hill, E. W.; Novoselov, K. S.; Geim, A. K. Science 2008, 320, 356.
(5) Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda,
J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
(6) Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Adv. Mater. 2010,
22, 734.
(7) Gupta, V.;Chaudhary, N.; Srivastava, R.; Sharma, G. D.; Bhardwaj,
R.; Chand, S. J. .Am. Chem. Soc. 2011, 133, 9960.
(8) Shen, J. H.; Zhu, Y. H.; Chen, C.; Yang, X. L.; Li, C. Z. Chem.
Commun. 2011, 47, 2580.
(9) Li, Y.; Hu, Y.; Zhao, Y.; Shi, G. Q.; Deng, L. E.; Hou, Y. B.; Qu,
L. T. Adv. Mater. 2011, 23, 776.
(10) Wu, J. S.; Pisula, W.; M€ullen, K. Chem. Rev. 2007, 107, 718.
(11) Yan, X.; Cui, X.; Li, L. S. J. Am. Chem. Soc. 2010, 132, 5944.
(12) Lu, J.; Yeo, P. S. E.; Gan, C. K.; Wu, P.; Loh, K. P. Nat.
Nanotechnol. 2011, 6, 247.
(13) Zhi, L. J.; M€ullen, K. J. Mater. Chem. 2008, 18, 1472.
(14) Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; M€ullen, K.
Angew. Chem., Int. Ed. 2008, 47, 2990.
(15) Liu, R. L.; Wu, D. Q.; Feng, X. L.; M€ullen, K. Angew. Chem., Int.
Ed. 2010, 49, 2565.
(16) Samori, P.; Severin, N.; Simpson, C. D.; M€ullen, K.; Rabe, J. P.
J. Am. Chem. Soc. 2002, 124, 9454.
(17) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,
1339.
(18) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat.
Nanotechnol. 2008, 3, 101.
(19) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nature Chem. 2010,
2, 1015.
(20) Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q.
Angew. Chem., Int. Ed. 2009, 48, 4598.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, XRD and
b
Raman spectra of AG-1200, FT-IR spectra of PL GQD-1200, and
AFM images of GQD-900. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
ruililiu@shu.edu.cn; muellen@mpip-mainz.mpg.de
’ ACKNOWLEDGMENT
This work was financially supported by the Max Plank Society
through the program EENERCHEM, the German Science Founda-
tion (Korean-German IR TG), and DFG Priority Program SPP
15223
dx.doi.org/10.1021/ja204953k |J. Am. Chem. Soc. 2011, 133, 15221–15223