Scheme 1. Retrosynthetic Analysis for Nitrooleic Acid Isomers 1 and 2
nitric oxide-mediated signaling. More recent work shows that
reaction. Elimination of water from the corresponding nitro
alcohols followed by hydrolysis would form the nitroalkenes
1 and 2.
(E)-9- and (E)-10-nitrooctadec-9-enoic acids (nitrated oleic
acids, OA-NO2) occur with a higher prevalence in human
blood and urine than LNO2.6 Additionally, OA-NO2 activates
PPARγ with a greater potency than LNO2.6
Current methods for the synthesis of these nitrated fatty
acids involve the modification of previous nitro-selenylation
strategies used to synthesize conjugated nitroalkenes.7,8
Alternatively, addition of nitronium tetrafluoroborate to an
unsaturated fatty acid or fatty acid hydroperoxide also forms
nitrated fatty acids.9 These nonspecific procedures form
regioisomeric mixtures of nitroalkene products that require
multiple purification steps. More importantly, these nonspe-
cific syntheses prevent strict analysis of the structural
requirements for the biological activity of these unique
molecules. Here we report the first regio- and stereospecific
syntheses of (E)-9-nitrooctadec-9-enoic acid (1) and (E)-10-
nitrooctadec-9-enoic acid (2) and show that these nitrated
lipids spontaneously release nitric oxide.
Scheme 2. Synthesis of (E)-9-Nitrooctadec-9-enoic Acid, 1
Scheme 1 describes the retrosynthetic strategy for prepara-
tion of the specific nitrooleic acid regioisomers. The basic
strategy relies upon the nitro aldol condensation (Henry
reaction) between a nine-carbon nitro component and nine-
carbon aldehyde as the critical carbon-carbon bond-forming
(4) (a) Lima, E. S.; Bonini, M. G.; Augusto, O.; Barbeiro, H. V.; Souza,
H. P.; Abdalla, D. S. P. Free Radic. Biol. Med. 2005, 39, 532. (b) Schopfer,
F. J.; Baker, P. R. S.; Giles, G.; Chumley, P.; Batthyany, C.; Crawford, J.;
Patel, R. P.; Hogg, N.; Branchaud, B. P.; Lancaster, Jr., J. R.; Freeman, B.
A. J. Biol. Chem. 2005, 280, 19289.
(5) (a) Kerwin, J. F., Jr.; Lancaster, J. R., Jr.; Feldman, P. L. J. Med.
Chem. 1995, 38, 4343. (b) Umans, J. G.; Levi, R. Annu. ReV. Physiol. 1995,
57, 771. (c) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.;
Janczuk, A. J. Chem. ReV. 2002, 102, 1091 and references therein. (d)
Thatcher, G. R. J. Curr. Top. Med. Chem. 2005, 5, 597.
(6) Baker, P. R. S.; Lin, Y.; Schopfer, F. J.; Woodcock, S. R.; Groeger,
A. L.; Batthyany, C.; Sweeney, S.; Long, M. H.; Iles, K. E.; Baker, L. M.
S.; Branchaud, B. P.; Chen, Y. E.; Freeman, B. A. J. Biol. Chem. 2005,
280, 42464.
(7) Lim, D. G.; Sweeney, S.; Bloodsworth, A.; White, C. R.; Chumley,
P. H.; Krishna, N. R.; Schopfer, F. J.; O’Donnell, V. B.; Eiserich, J. P.;
Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15941.
(8) (a) Hamaya, T.; Tomoda, S.; Takeuchi, Y.; Nomura, Y. Tetrahedron
Lett. 1982, 23, 4733. (b) Seebach, D.; Calderari, G.; Knochel, P. Tetrahedron
1985, 41, 4861.
The regio- and stereospecific synthesis of 1 (Scheme 2)
begins with ozonolysis of cis-cyclooctene to form aldehyde
(3) as previously reported.10 Condensation of 3 with ni-
tromethane and a catalytic amount of potassium tert-butoxide
(t-BuOK) affords nitro alcohol (4).11 Acetylation of 4
(9) (a) O’Donnell, V. B.; Eiserich, J. P.; Bloodsworth, A.; Chumley, P.
H.; Kirk, M.; Barnes, S.; Darley-Usmar, V. M.; Freeman, B. A. Methods
Enzymol. 1999, 301, 454. (b) Napolitano, A.; Camera, E.; Picardo, M.;
d’Ischia, M. J. Org. Chem. 2000, 65, 4853.
(10) Li, G.-Y.; Che, C.-M. Org. Lett. 2004, 6, 1621.
(11) Denmark, S. E.; Kesler, B. S.; Moon, Y.-C. J. Org. Chem. 1992,
57, 7, 4912.
2306
Org. Lett., Vol. 8, No. 11, 2006