10.1002/chem.201705328
Chemistry - A European Journal
FULL PAPER
organic layer, which caused the desired product to precipitate from
solution. The precipitate was collected by filtration and then dissolved in
H2O. Finally, NaOH (aq., 10 M) was added dropwise to the water layer
until the pH was ~ 8-9, which resulted in precipitation of pure product.
Yield: 1.4g (70%). Data for bpanth: MS: m/z (%): 333.1387 [M+H]+ 1H
NMR (300MHz, CDCl3): δ=8.87 (d, J=6.0 Hz, 4H; ArH), 7.61 (m, 4H, ArH),
7.44 (d, J=6.0 Hz,4H;ArH), 7.40 ppm (m, 4H, ArH). MS and 1H NMR
spectra of bpanth were shown in Figure S1 and Figure S2, respectively.
[11] L. J. Zhu, X. Peng, H. T. Li, Y. Y. Zhang, S. Z. Yao, Sensor. Actuat. B,
2017, 238, 196-203.
[12] B. B. Campos, M. Algarra, B. Alonso, C. M. Casado, J. Jiménez-
Jiménez, E. Rodríguez-Castellón, J. C. G. E. da Silva, Talanta 2015,
144, 862-867.
[13] M. Zheng, Z. G. Xie, D. Qu, D. Li, P. Du, X. B. Jing, Z. C. Sun, ACS
Appl. Mater. Inter. 2013, 5, 13242-13247.
[14] M. A. Shenashen, A. Shahat, S. A. El-Safty, J. Hazard. Mater. 2013,
244-245, 726-735.
[15] M. C. So, G. P. Wiederrecht, J. E. Mondloch, J. T. Hupp, O. K. Farha,
Chem. Commun., 2015, 51, 3501-3510.
Synthesis of NUM-5: Zn(NO3)2·6H2O (30.00 mg, 0.10 mmol), bpanth
(16.60 mg, 0.05 mmol), and 4,4’-oxybis(benzoic acid) (H2oba) (16.60 mg,
0.10 mmol) were dissolved in 3 mL N,N’-dimethylformamide (DMF), and
stirred for 30 min. The resulting solution was then sealed, and heated to
100 ˚C and kept for 3d. After cooling down to room temperature, orange
chrysanthemum petal-shaped crystals were obtained (yield ca. 53.8 %,
based on bpanth). EA Calcd (%) for C72H54Zn3N4O17: C 59.12, H 3.77, N
3.88; Found: C 58.83, H 3.68, N 3.68. FT-IR (cm-1, KBr): 3321w, 3065s,
2932s, 1923m, 1662s, 1606vs, 1562vs, 1500s, 1409vs, 1302m, 1163vs,
1099s, 1017m, 877vs, 777vs, 701m, 658s, 532m.
[16] M. D. Allendorf, C. A. Bauer, R. K. Bhaktaa, R. J. T. Houk, Chem. Soc.
Rev., 2009, 38, 1330-1352.
[17] Z. C. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815-5840.
[18] Z. Hu, W. P. Lustig, J. Zhang, C. Zheng, H. Wang, S. J. Teat, Q. Gong,
N. D. Rudd, J. Li, J. Am. Chem. Soc. 2015, 137, 16209-16215.
[19] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T.
Hupp, Chem. Rev. 2012, 112, 1105-1125.
[20] Q. Zhang, J. Su, D. Feng, Z. Wei, X. Zou, H. C. Zhou, J. Am. Chem.
Soc. 2015, 137, 10064-10067.
[21] Z. Wei, Z. Y. Gu, R. K. Arvapally, Y. P. Chen, R. N. McDougald, J. F.
Ivy, A. A. Yakovenko, D. Feng, M. A. Omary, H. C. Zhou, J. Am. Chem.
Soc. 2014, 136, 8269-8276.
Fluorescence Titration Experiments: Fluorescence titrations were
performed on a Varian Cary Eclipse fluorescence spectrometer using a 1
cm path length quartz fluorescence cell. Titrations were carried out by
placing the aqueous suspensions of NUM-5 (3 mg/10 mL) into the 4 mL
[22] Y. B. He, W. Zhou, G. D. Qian, B. Chen, Chem. Soc. Rev. 2014, 43,
5657-5678.
cuvette and adding increasing amounts of CrVI (Cr2O7 or CrO42-) (0-2.5
2-
[23] W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh,
Chem. Soc. Rev. 2017, 46, 3242-3285.
× 10-3 mol L-1) using a microsyringe. The aqueous suspensions of NUM-5
was excited at 390 nm, and the emission spectra were recorded in the
range 400-650 nm. After each addition, an equilibration time of 8-10 min
was allowed before the fluorescence intensity was recorded. Statistical
analysis of the data was carried out using Origin 8.0.
[24] W. Cho, H. J. Lee, G. Choi, S. Choi, M. Oh, J. Am. Chem. Soc. 2014,
136, 12201-12204.
[25] B. Wang, X. L. Lv, D. W. Feng, L. H. Xie, J. Zhang, M. Li, Y. B. Xie, J. R.
Li, H. C. Zhou, J. Am. Chem. Soc. 2016, 138, 6204-6216.
[26] J. Yang, Y. Dai, X. Y. Zhu, Z. Wang, Y. S. Li, Q. X. Zhuang, J. L. Shi, J.
L. Gu, J. Mater. Chem. A 2015, 3, 7445-7452.
[27] J. H. Wang, M. Li, D. Li, Chem. Sci. 2013, 4, 1793-1801.
[28] S. Y. Zhang, W. Shi, P. Cheng, M. J. Zaworotko, J. Am. Chem. Soc.
2015, 137, 12203-12206.
Acknowledgements
This work was financially supported by the NSFC (21371102,
21531005, 21673120 and 21771113), and the NSF of Tianjin
(16JCZDJC36900 and 15JCZDJC38800).
[29] Y. Fang, W. Liu, S. J. Teat, G. Dey, Z. Shen, L. An, D. Yu, L. Wang, D.
M. O’Carroll, J. Li, Adv. Funct. Mater. 2017, 27, 1603444.
[30] Y. J. Cui, T. Song, J. C. Yu, Y. Yang, Z. Y. Wang, G. D. Qian, Adv.
Funct. Mater. 2015, 25, 4796-4802.
[31] Z. S. Dou, J. C. Yu, Y. J. Cui, Y. Yang, Z. Y. Wang, D. R. Yang, G. D.
Qian, J. Am. Chem. Soc. 2014, 136, 5527-5530.
Keywords: Luminescent metal-organic-framework • water-
phase stability • chemosensor • water system • hexavalent
chromium
[32] W. X. Ni, M. Li, J. Zheng, S. Z. Zhan, Y. M. Qiu, S. W. Ng, D. Li, Angew.
Chem. Int. Ed. 2013, 52, 13472-13476.
[33] J. Zhang, D. Jia, M. G. Humphrey, S. Meng, M. J. Zaworotko, M. P.
Cifuentesb, C. Zhang, Chem. Commun. 2016, 52, 3797-3800.
[34] M. Usman, S. Mendiratta, S. Batjargal, G. Haider, M. Hayashi, N. R.
Gade, J. W. Chen, Y. F. Chen, K. L. Lu, ACS Appl. Mater. Inter. 2015, 7,
22767-22774.
[1]
[2]
A. Levina, P. A. Lay, Coord. Chem. Rev. 2005, 249, 281-298.
M. Reynolds, L. Stoddard, I. Bespalov, A. Zhitkovich, Nucleic Acids Res.
2007, 35, 465-476.
[3]
[4]
A. Zhitkovich, Chem. Res. Toxicol. 2005, 18, 3-11.
P. K. Lee, S. Yu, H. J. Chang, H. Y. Cho, M. J. Kang, B. G. Chae, Sci.
Rep. 2016, 6, 36088.
[35] P. Deria, J. Yu, T. Smith, R. P. Balaraman, J. Am. Chem. Soc. 2017,
139, 5973-5983.
[5]
[6]
[7]
Y. Zhang, Q. Wang, J. N. Lu, Q. Wang, Y. Q. Cong, Chemosphere
2016, 162, 55-63.
[36] V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43,
5994-6010.
A. V. Desai, B. Manna, A. Karmakar, A. Sahu, S. K. Ghosh, Angew.
Chem. Int. Ed. 2016, 55, 7811-7815.
[37] Y. X. Guo, X. Feng, T. Y. Han, S. Wang, Z. G. Lin, Y. P. Dong, B. Wang,
J. Am. Chem. Soc. 2014, 136, 15485-15488.
U. Araujo-Barbosa, E. Peña-Vazquez, M. C. Barciela-Alonso, S. L. C.
Ferreira, A. M. P. dos Santos, P. Bermejo-Barrera, Talanta 2017, 170,
523-529.
[38] G. F. Ji, J. J. Liu, X. C. Gao, W. Sun, J. Z. Wang, S. L. Zhao, Z. L. Liu,
J. Mater. Chem. A 2017, 5, 10200-10205.
[39] Q. Zhang, J. C. Yu, J. F. Cai, L. Zhang, Y. J. Cui, Y. Yang, B. Chen, G.
D. Qian, Chem. Commun. 2015, 51, 14732-14734.
[8]
[9]
T. J. Jiang, M. Yang, S. S. Li, M. J. Ma, N. J. Zhao, Z. Guo, J. H. Liu, X.
J. Huang, Anal. Chem. 2017, 89, 5557-5564.
[40] F. Y. Yi, J. P. Li, D. Wu, Z. M. Sun, Chem. Eur. J. 2015, 21, 11475-
11482.
X. J. Gong, Y. Liu, Z. H. Yang, S. M. Shuang, Z. Y. Zhang, C. Dong,
Anal. Chim. Acta 2017, 968, 85-96.
[41] W. Liu, X. Huang, C. Xu, C. Y. Chen, L. Z. Yang, W. Dou, W. M. Chen,
H. Yang, W. S. Liu, Chem. Eur. J. 2016, 22, 18769-18776.
[42] A. L. Spek, J. Appl. Cryst. 2003, 36, 7-13.
[10] P. J. Li, Y. Y. Hong, H. T. Feng, S. F. Y. Li, J. Mater. Chem. B 2017, 5,
2979-2988.
This article is protected by copyright. All rights reserved.