Fig. 5 X-ray crystal structure of [Co(1)2(H2O)4](NO3)2?H2O 5 showing hydrogen bonding interactions. CH hydrogen atoms omitted for clarity.
indices based on 5923 reflections with I . 2s (I) (refined on F2), 335
parameters. Lp and absorption corrections applied ,m 5 0.479 mm21
CCDC 281274 & 281275. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b511259a.
crystallinity. The structure of 4 also suggests a reason why the gels
should be relatively free-flowing despite their highly structured
nature. If gel aggregation is via hydrogen bonding to anions then
the gel rheological properties will be linked to the strength of the
(relatively weak) hydrogen bonds and to the p-stacking. The van
der Waals dimensions of the metallomacrocycle-nitrate unit are
ca. 2 6 1.5 nm and hence the smallest fibres would comprise
ca. 10–15 molecules in width. This aggregation mode contrasts to
.
1 B. G. Xing, M. F. Choi and B. Xu, Chem. Commun., 2002, 362.
2 A. K. Bajpai and M. Sharma, J. Macromol. Sci., Pure Appl. Chem.,
2005, A42, 663.
3 C. H. Ni, X. Y. Zeng and H. Huang, Chin. Chem. Lett., 2005, 16, 675.
4 K. B. Sentell and E. Beaullieu, Invest. Ophthalmol. Visual Sci., 2004, 45,
1573.
5 M. George and R. G. Weiss, Langmuir, 2003, 19, 1017.
6 J. D. Badjic and N. M. Kostic, J. Mater. Chem., 2001, 11, 408.
7 Q. Wei and S. L. James, Chem. Commun., 2005, 1555.
8 L. Yang, E. Guihen and J. D. Glennon, J. Sep. Sci., 2005, 28, 757.
9 C. S. Love, V. Chechik, D. K. Smith, K. Wilson, I. Ashworth and
C. Brennan, Chem. Commun., 2005, 1971.
10 M. Henry, ‘Nanocrystals from Solutions and Gels’ in Encyclopedia of
Nanoscience and Nanotechnology, ed. H. S. Nalwa, American Scientific
Publishers: Valencia, 2004, pp. 555.
11 ‘Polymer Gels: Fundamentals and Biomedical Applications’ ed.
D. Derossi, K. Kajiwara, Y. Osada, and A. Yamauchi, Plenum Press:
New York, 1991.
12 ‘Gels’, in Prog. Colloid Polym. Sci., ed. F. Kremer and G. Lagaly, 1996.
13 M. Henry, ‘Molecular Tectonics in Sol-Gel Chemistry’ in Encyclopedia
of Nanoscience and Nanotechnology, ed. H. S. Nalwa, American
Scientific Publishers: Valencia, CA, 2004. pp. 743.
14 A. R. Hirst and D. K. Smith, Langmuir, 2004, 20, 10851.
15 K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Friggeri,
A. Heeres, A. Meetsma, B. L. Feringa and J. van Esch, Angew. Chem.,
Int. Ed., 2004, 43, 1663.
16 Y. Jeong, K. Hanabusa, H. Masunaga, I. Akiba, K. Miyoshi, S. Sakurai
and K. Sakurai, Langmuir, 2005, 21, 586.
…
the NH OLC hydrogen bonding proposed for other bis(urea)
gels which do not contain metals.23
Analogous gelation behaviour was also observed for ligand 1 in
the presence of copper(II) nitrate, the incorporation of the metal
being readily apparent from the blue coloration of the decanted
material (Fig. 1c). The copper nitrate gel proved to be crystalline
and adopted a structure involving well-defined ribbons of highly
variable width, somewhat related to the morphology of the fibres
seen for 3/AgNO3 (Fig. 4, cf. Fig. 3c). Under similar conditions
(methanol : water 12 : 1 v/v) with cobalt(II) nitrate, crystals of a 2 : 1
complex [Co(1)2(H2O)4](NO3)2?H2O 5 were isolated, fig. 5. The
metal centre is coordinated by two mutually trans ligands 1 bound
by only one pyridyl nitrogen atom each. The urea groups closest to
the coordinated pyridyl units hydrogen bond to nitrate as with
4 however, bridging to the next molecule is via included water.
End-to-end interactions are via hydrogen bonding from coordi-
nated water to the uncoordinated pyridyl groups and conventional
urea R21(6) urea hydrogen bonds are also observed. Thus the
structure of 5 retains the anion-mediated intermolecular interac-
tions observed in 4. This key aspect suggests that systematic
variation of anion identity and urea hydrogen bond acidity (e.g. via
peripheral substitution) could lead to gels with systematically
tailored rheological properties and well-defined structure.
17 K. Hanabusa, K. Shimura, K. Hirose, M. Kimura and H. Shirai, Chem.
Lett., 1996, 885.
18 K. Hanabusa, M. Yamada, M. Kimura and H. Shirai, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 1949.
19 M. de Loos, A. G. J. Ligtenbarg, J. van Esch, H. Kooijman, A. L. Spek,
R. Hage, R. M. Kellogg and B. L. Feringa, Eur. J. Org. Chem., 2000,
3675.
20 N. M. Sangeetha, S. Bhat, A. R. Choudhury, U. Maitra and P. Terech,
J. Phys. Chem. B, 2004, 108, 16056.
In conclusion we report a general approach to a variety of well-
defined self-assembling metallogels subject to facile variation.
21 M. D. Hollingsworth and K. D. M. Harris, ‘Urea, Thiourea and
Selenourea’ in Comprehensive Supramolecular Chemistry, ed.
J. L. Atwood, J. E. D. Davies, D. D. MacNicol, and F. Vo¨gtle,
Pergamon: Oxford, 1996, pp. 177.
22 J. Brinksma, B. L. Feringa, R. M. Kellogg, R. Vreeker and J. van Esch,
Langmuir, 2000, 16, 9249.
23 J. van Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek,
R. M. Kellogg and B. L. Feringa, Chem.-Eur. J., 1999, 5, 937.
24 J. D. Ferry, ‘Viscoelastic Properties of Polymers’, 3rd ed., Wiley,
New York, 1980.
25 J. Bernstein, R. E. Davis, L. Shimoni and N.-L. Chang, Angew. Chem.,
Int. Ed. Engl., 1995, 34, 1555.
Notes and references
{ Crystal data for 4: C28H26Ag1Cl3N8O5.74, M 5 780.66, orthorhombic,
space group Pmn21 (No. 31), a 5 43.826(4), b 5 5.2608(5), c 5
14.0960(14) A, V 5 3250.0(5) A , Z 5 4, Dc 5 1.595 g cm23, F000
5
3
˚
˚
˚
1575.730, Mo Ka radiation, l 5 0.71073 A, T 5 120 K, 2hmax 5 55.6u,
27657 reflections collected, 7287 unique (Rint 5 0.02). Final GooF 5 0.8655,
R1 5 0.0473, wR2 5 0.1110, R indices based on 6271 reflections with I .
3.00s(I) (refinement on F2), 419 parameters, 7 restraints. Lp and
absorption corrections applied, m 5 0.920 mm21. Absolute structure
parameter 5 0.55(3). 5: C36H56CoN14O16, M 5 999.88, triclinic, space
¯
˚
3
group P1 (No. 2), a 5 9.3380(6), b 5 11.3324(7), c 5 11.4099(7) A,
˚
26 D. R. Turner, B. Smith, E. C. Spencer, A. E. Goeta, I. R. Evans,
D. A. Tocher, J. A. K. Howard and J. W. Steed, New J. Chem., 2005,
29, 90.
a 5 74.1670(10), b 5 71.2920(10), c 5 80.3580(10)u, V 5 1095.99(12) A ,
Z 5 1, Dc 5 1.515 g cm23, F000 5 525, MoKa radiation, l 5 0.71073 A,
˚
T 5 120(2) K, 2hmax 5 61.0u, 14659 reflections collected, 6590 unique
(Rint 5 0.0205). Final GooF 5 1.092, R1 5 0.0436, wR2 5 0.1027, R
27 D. R. Turner, E. C. Spencer, J. A. K. Howard, D. A. Tocher and
J. W. Steed, Chem. Commun., 2004, 1352.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5423–5425 | 5425