4694 Inorg. Chem., Vol. 48, No. 11, 2009
Dinelli et al.
Table 1. Crystal Data and Structure Refinements for mer-[RuCl3(dppb)(py)] and {NiTPyP[RuCl3(dppb)]4}
mer-[RuCl3(dppb)(py)]
{NiTPyP[RuCl3(dppb)]4}
empirical formula
cryst syst
[C33H33Cl3NP2Ru]2
monoclinic
C2/c
1425.93
293(2)
32.194(3)
11.0531(9)
35.705(3)
103.259(6)
{[C38H34N2P2Cl3Ru]4Ni} 1.7(CH3OH).1.4(CH2Cl2).0.8(H2O)
triclinic
P1
3398.62
100(2)
13.9380(5)
16.7430(6)
19.9160(8)
R = 105.726(2)
β = 94.509(2)
γ = 109.108(2)
4155.1(3)
space group
fw
temperature, K
˚
a, A
˚
b, A
˚
c, A
β, deg
3
˚
V (A )
F
12366.7(17)
1.532
7.652
10917
R1 = 0.0322, wR2 = 0.0842
calcd (Mg/m3)
1.358
0.832
μ (mm-1)
reflns collected
22391
R1 = 0.0669, wR2 = 0.1824
final R indices [I > 2σ(I)]
synthesized from 15 mg (2.24 ꢀ 10-5 mol) of TPyP (5,10,15,
20-tetra(4-pyridyl)porphyrin) and 65 mg (9.94 ꢀ 10-5 mol) of
mer-[RuCl3(dppb)H2O] in 10 mL of a mixture of chloroform
(95%) and methanol (5%). After the solution was stirred for 4 h,
the volume was reduced under reduced pressure to about 2 mL
and ether was added to give a reddish-brown powder. The excess
of mer-[RuCl3(dppb)(H2O)] was removed by dissolution of
the reaction product in CH2Cl2 followed by filtration. The
filtrate was reduced to 1 mL, and ether was added to give the
desired compound. Yield: 64.2 mg (84%). Anal. calcd for
COLLECT program;39 integration and scaling of the reflections
were performed with the HKL Denzo-Scalepack system of
programs.40 Absorption corrections were carried out using the
multiscan method.41 Both structures were solved by direct
methods with SHELXS-97.42 The models were refined by full-
matrix least-squares on F2 with SHELXL-97.43 All of the
hydrogen atoms were stereochemically positioned and refined
with a riding model.44
Computational Methods. The crystallographic structures
of mer-[RuCl3(dppb)(py)] monomers and dimers were used
without further refinement. The electron density was calculated
by the B3LYP45/SDD46,47 model. The intermolecular interac-
tions were analyzed by the natural bond order (NBO) method48
and by Wiberg bond indexes.49 All of these calculations were
made by the Gaussian 03 suite of software.50 Figure 2 was
generated by using the Molekel 5.3.0 program.
C
152H138N8P8Cl12Ru4: C, 57.88; H, 4.41; N, 3.55%. Found:
C, 57.53; H, 4.41; N, 3.58%. UV-vis CH2Cl2, λ in nm (ε ꢀ
10-4 in L mol-1 cm-1): 228 (12), 254 (10), 422 (17), 514 (2.3), 544
(1.3), 584 (0.85), 642 (0.53).
Synthesis of {NiTPyP[RuCl3(dppb)]4} (2). This proce-
dure is as described for 1 but uses 15 mg (2.20 ꢀ 10-5 mol) of the
NiTPyP and 58 mg (9.04 ꢀ 10-5 mol) of mer-[RuCl3(dppb)H2O].
Yield: 65.2 mg (92%). Anal. calcd for C152H136N8P8Cl12NiRu4:
C, 56.86; H, 4.27; N, 3.49%. Found: C, 56.31; H, 4.21; N, 3.30%.
UV-vis CH2Cl2, λ in nm (ε ꢀ 10-4 in L mol-1 cm-1): 238 (26),
250 (19), 420 (21), 540 (3.5), 612 (2.2).
Results and Discussion
Complexes 1-3 were obtained in good yields utilizing mild
conditions, as described previously in the Experimental
Synthesis of {CoTPyP[RuCl3(dppb)]4} (3). This proce-
dure is as described for 1 but uses CoTPyP (6 mg; 8.88 ꢀ 10-6
mol) and mer-[RuCl3(dppb)(H2O)] (23.1 mg; 3.55 ꢀ 10-6 mol).
Yield: 21.0 mg (74%). Anal. calcd for C152H136N8P8Cl12CoRu4:
C, 56.85; H, 4.27; N, 3.49%. Found: C, 56.73; H, 4.29; N, 3.46%.
UV-vis CH2Cl2, λ in nm (ε ꢀ 10-4 in L mol-1 cm-1): 236 (25),
252 (20), 444 (18), 554 (3.2), 600 (2.0).
(41) Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
(42) Sheldrick, G. M. SHELXS-97; University of Gottingen: Gottingen,
Germany, 1997.
(43) Sheldrick, G. M. SHELXL-97; University of Gottingen: Gottingen,
Germany, 1997.
(44) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
X-Ray Crystallographic Data Collection, Refinement,
and Description of the mer-[RuCl3(dppb)(py)] and {NiT-
PyP[RuCl3(dppb)]4} Complexes. Crystallographic data of
the mer-[RuCl3(dppb)py] complex were collected on an Enraf-
Nonius CAD-4 diffractometer with graphite-monochromated
(45) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(46) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor.
Chim. Acta 1990, 77, 123–141.
(47) Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114, 3408–
3420.
(48) Weinhold, F. Natural Bond Orbital Methods; John Wiley & Sons:
Chichester, U.K., 1998.
(49) Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096.
(50) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.;Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision
B.3; Gaussian, Inc.: Pittsburgh PA, 2003.
˚
Cu KR radiation (λ = 1.54184 A). The final unit-cell parameters
were obtained by least squares on the setting angles for 25
reflections with typical ranges of 2θ. Data were corrected for
Lorentz and polarization effects and by absorption, using the
method of Walker and Stuart.38 Single crystals of the {NiTPyP
[RuCl3(dppb)]4} complex were used for data collection and cell
parameter determination on an Enraf-Nonius Kappa-CCD
˚
diffractometer, using Mo KR radiation (λ = 0.71073 A). Data
collection for {NiTPyP[RuCl3(dppb)]4} was carried out with the
(38) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, 39, 158–166.
(39) Enraf-Nonius Collect; Nonius BV: Delft, The Netherlands, 1997-
2000.
(40) Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data
Collected in Oscillation Mode. In Methods Enzymology, Macromolecular
Crystallography; Carter, J. C. W., Sweet, R. M., Eds.; Academic Press: New
York, 1997; Vol. 276, Part A, pp 307-26.