2654 J. Phys. Chem. A, Vol. 104, No. 12, 2000
Tabata et al.
reaction temperature. We compared the product selectivities at
the level of 10% CH4 conversion. We therefore compared the
data at different temperatures in order to assess the effect of
NO2 concentration. The reaction temperature at the level of CH4
conversion decreased by the addition of NO2 (Figure 1). This
decrease may suppress the subsequential oxidation to CO.
Additionally, since higher NO2 concentration over 0.5% brings
a slight decrease of both selectivities of CH3OH and CH2O,
the decomposition reaction of CH3OH and CH2O with NO2 in
eqs 17-20 could affect their selectivities.
Regarding the CH4/O2 ratio, we expected an increase of
selectivity of CH3OH and a decrease of selectivity of CH2O
from eqs 8 and 10 as the ratio increased. The variations on the
selectivities of CH3OH and CH2O are small except for CH4/O2
) 2 during the region of our experiments (Figure 8). Further-
more, another feature of the experimental result is the parallel
movement of the selectivities of CH3OH and CH2O in that
region. The selectivities of CO and CO2 decrease at CH4/O2 )
2 and that of CO increases slightly after the ratio exceeds 2.
Therefore, we considered that CH3OH produced through eq 8
could be decomposed subsequently to CO through eqs 13-16.
The increase of the reaction temperatures at the 10% CH4
conversion in Figure 9 is assumed to enhance the subsequential
oxidation to CO. CH4/O2 ) 2 is optimum for the formation of
CH3OH and CH2O.
Regarding the variation with SV, the selectivities of CH2O
and CO seem to move in conjunction (Figure 10). The decrease
of CO and the increase of CH2O in the selectivities are assumed
to be the result of the retardation of the subsequent oxidation
from CH2O to CO. The less variation of CH3OH selectivity
with SV shows that CH3OH is more stable. The transition
barriers of the decomposition route in eqs 13 and 15 are 1.4
and 0.2 kcal/mol, respectively.4 The small difference between
the transition barriers is assumed to lead to the large difference
of selectivities of CH3OH and CH2O under a higher SV region.
We obtained ca. 7% yield of C1 oxygenates at SV ) 7500 h-1
(Figure 10).
experimentally detected selectivities of C1 oxygenates by using
the calculated transition barriers and rate constants of the
reaction routes.
Acknowledgment. This study was financially supported by
the New Energy and Industrial Technology Development
Organization (NEDO, Japan). K.T. acknowledges Prof. J. L.
G. Fierro and his colleagues for their kind discussions.
References and Notes
(1) Taylor, S. H.; Hargreaves, J. S.; Hutchings, G. J.; Joyner, W. J.
Methane and Alkane ConVersion Chemistry; Plenum: New York, 1995; p
339.
(2) Pitchai, R.; Klier, K. Catal. ReV. -Sci. Eng. 1986, 28, 13.
(3) Pak, S.; Rosynek, M. P.; Lunsford, J. H. J. Phys. Chem. 1994, 98,
11786.
(4) Arutyunov, V. S.; Basevich, V. Y.; Vedeneev, V. I. Russ. Chem.
ReV. 1996, 65, 197.
(5) Mackie, J. C. Catal. ReV. -Sci. Eng. 1991, 33, 169.
(6) Foster, N. R. Appl. Catal. 1985, 19, 1.
(7) Gesser, H. D.; Hunter, N. R.; Prakash, C. B. Chem. ReV. 1985, 85,
235.
(8) Burch, R.; G. D. Squire, G. D.; Tsang, S. C. J. Chem. Soc., Faraday
Trans. 1. 1989, 85, 3561.
(9) Baldwin, R. R.; Hopkins, D. E.; Norris, A. C.; Walker, R. W.
Combust. Flame. 1970, 15, 33.
(10) Thomas, D. J.; Willi, R.; Baiker, A. Ind. Eng. Chem. Res. 1992,
31, 2272.
(11) Krylov, O. V. Catal. Today 1993, 18, 209.
(12) Feng, W.; Knopf, F. C.; Dooley, K. M. Energy Fuels 1994, 8, 815.
(13) Amano, T.; Dryer, F. L. Twenty-SeVenth Symposium (International)
on Combustion; The Combustion Institute: Pittsburgh, 1998; p 397.
(14) Bromly, J. H.; Barnes, F. J.; Muris, X. Y.; Haynes, B. S. Combust.
Sci. Technol. 1996, 115, 259.
(15) Wharren, B. K. Catal. Today 1992, 13, 311.
(16) Burch, R.; Squire, G. D.; Tsang, S. C. Appl. Catal. 1989, 46, 69.
(17) Smith, D. F.; Milner, R. T. Ind. Eng. Chem. 1931, 23, 357.
(18) Irusta, S.; Lombardo, E. A.; Miro, E. E. Catal. Lett. 1994, 29, 339.
(19) Han, L. B.; Tsubota, S.; Haruta, M. Chem. Lett. 1995, 931.
(20) Otsuka, K.; Takahashi, R.; Amakawa, K.; Yamanaka, I. Catal.
Today 1998, 45, 23. Otsuka, K.; Takahashi, R.; Amakawa, K.; Yamanaka,
I. Proceed. JECAT 1997, 41.
(21) Ban˜ares, M. A.; Cardoso, J. H.; Hutchings, G. J.; Bueno J. M. C.;
Fierro, V. L. G. Catal.Lett. 1998, 56, 149.
(22) Yamaguchi, Y.; Teng, Y.; Shimomura, S.; Tabata, K.; Suzuki, E.
J. Phys. Chem., in press.
(23) Teng, Y.; Ouyang F.; Dai, L.; Karasuda T.; Sakurai H.; Tabata K.;
Suzuki E. Chem. Lett. 1999, 991.
Conclusion
The anticipation of the selectivity of reaction products in a
gaseous chain reaction is still difficult, and the precise reaction
mechanisms have not been cleared. We examined several
possible contributing reactions for the production of CH3OH
and CH2O in gaseous selective oxidation with CH4-O2-NO2
with both theoretical and experimental approaches. We theoreti-
cally calculated several transition barriers and rate constants of
our suggested reaction routes. We can appropriately explain the
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Patterson, G.
A.; Montgomery, J. M.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, Gaussian Inc.,
Pittsburgh, PA, 1995.
(25) Layng, T. E.; Soukop, R. Ind. Eng. Chem. 1928, 20, 1052.