10.1002/anie.202003670
Angewandte Chemie International Edition
COMMUNICATION
Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytzani‐
Stephanopoulos, H. He, Angew. Chem. Int. Ed. 2012, 51, 9628-
9632.
byproducts such as formaldehyde in the exhaust stream can lead
to a very significant formation of the highly toxic hydrogen cyanide.
In the worst case, we detected 30 ppm of HCN downstream of a
Cu-SSZ-13 SCR catalyst at 200-250 °C under fast SCR
conditions. In the high temperature regime and standard SCR
conditions, about 27 ppm HCN were produced over a VWTi
sample from 80 ppm HCHO dosed at the catalyst bed inlet. In
order to remove HCN emissions, different materials have been
proposed in literature,[15b, 31-32] some of them showing promising
activity at high temperatures. However, on Pt-based catalysts,
which are typically present in the exhaust aftertreatment system
to remove the potential NH3 slip emissions after the SCR catalyst,
HCN is either converted with high selectivity to N2O and NOx or is
only poorly oxidized at low temperatures.[15b, 31] Hence, without a
feasible removal catalyst the high HCN yield as measured in this
study under NG engine aftertreatment conditions represents a
strong challenge for the state-of-the-art NH3-SCR catalysts and
requires adequate measures to be taken. This is crucial especially
when considering the increasing share of natural gas fueled cars,
as predicted by the scenarios of the energy transition.
[9]
T. Schedlbauer, A. Gremminger, M. Casapu, O. Deutschmann, J.-
D. Grunwaldt, SAE Tech. Paper 2018, 2018-2001-5021.
B. Torkashvand, L. Maier, M. Hettel, T. Schedlbauer, J.-D.
Grunwaldt, O. Deutschmann, Chem. Eng. Sci. 2019, 195, 841-850.
H. Greim, Toxikologisch-arbeitsmedizinische Begründungen von
MAK-Werten (DFG Deutsche Forschungsgemeinschaft, 2004).
a) E. Jaszczak, Ż. Polkowska, S. Narkowicz, J. Namieśnik, Environ.
Sci. Pollut. Res. 2017, 24, 15929-15948; b) A. R. Koss, K. Sekimoto,
J. B. Gilman, V. Selimovic, M. M. Coggon, K. J. Zarzana, B. Yuan,
B. M. Lerner, S. S. Brown, J. L. Jimenez, Atmos. Chem. Phys. 2018,
18, 3299-3319.
a) S. G. Moussa, A. Leithead, S.-M. Li, T. W. Chan, J. J. Wentzell,
C. Stroud, J. Zhang, P. Lee, G. Lu, J. R. Brook, Atmos. environ.
2016, 131, 185-195; b) I. O. Liu, N. W. Cant, J. Catal. 2000, 195,
352-359; c) A. Frobert, S. Raux, S. Rousseau, G. Blanchard, Top.
Catal. 2013, 56, 125-129; d) F. Radtke, R. A. Koeppel, A. Baiker,
Appl. Catal. A 1994, 107, L125-L132; e) J. W. Hoard, A. Panov, SAE
Int., 2001.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
a) O. Kröcher, M. Elsener, E. Jacob, Appl. Catal. B 2009, 88, 66-82;
b) I. Nova, E. Tronconi, Urea-SCR technology for deNOx after
treatment of diesel exhausts, Vol. 5, Springer, 2014.
a) R. Voorhoeve, C. Patel, L. Trimble, R. Kerl, Science 1975, 149-
151; b) O. Kröcher, M. Elsener, Appl. Catal. B 2009, 92, 75-89; c)
C. M. Urban, R. J. Garbe, SAE Int., 1980.
A. S. Schröder, T. Schedlbauer, G. Wachtmeister, M. Prager, O.
Deutschmann, J.-D. Grunwaldt, M. Casapu,
(Ed.: FVV),
Forschungsvereinigung Verbrennungskraftmaschinen e.V. , 2017.
a) H. H. Richmond, G. S. Myers, G. F. Wright, J. Am. Chem. Soc.
1948, 70, 3659-3664; b) N. M. Martyak, B. McDuffie, T. I. Met. Finish
1991, 69, 63-65.
Acknowledgements
[18]
[19]
H. Turhan, T. Atalar, N. Erdem, C. Özden, B. Din, N. Gül, E. Yildiz,
L. Türker, Propellants Explos. Pyrotech. 2013, 38, 651-657.
a) V. S. Nguyen, H. L. Abbott, M. M. Dawley, T. M. Orlando, J.
Leszczynski, M. T. Nguyen, J. Phys. Chem. A 2011, 115, 841-851;
b) J. M. R. Muir, H. Idriss, Surf. Sci. 2009, 603, 2986-2990.
W. Supronowicz, I. Ignatyev, G. Lolli, A. Wolf, L. Zhao, L. Mleczko,
Green Chem. 2015, 17, 2904-2911.
We thank T. Bergfeldt (IAM-AWP, KIT) for elemental analysis. A.
Beilmann is thanked for measuring the catalyst surface.
Furthermore, we are grateful to J. Pesek and S. Barth for support
while operating the test bench. The authors would like to thank
very much C. Haas, K. Rusch and J. N. Bär, (both at MTU
Friedrichshafen GmbH) for supporting this study and very fruitful
discussions on the topic.
[20]
[21]
[22]
[23]
H. Stotz, L. Maier, A. Boubnov, A. T. Gremminger, J. D. Grunwaldt,
O. Deutschmann, J. Catal. 2019, 370, 152-175.
D. E. Doronkin, M. Casapu, T. Günter, O. Müller, R. Frahm, J.-D.
Grunwaldt, J. Phys. Chem. C 2014, 118, 10204-10212.
a) J. Li, R. Zhu, Y. Cheng, C.K. Lambert, R.T. Yang, Environ. Sci.
Technol. 2010, 44, 1799-1805; b) R.Q. Long, R.T. Yang, J. Catal.
2002, 207, 224-231.
B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, J. Catal.
2004, 225, 300-306.
M. Viertelhaus, P. Adler, R. Clérac, C.E. Anson, A.K. Powell, Eur. J.
Inorg. Chem. 2005, 692-703.
M.K. Johnson, D.B. Powell, R.D. Cannon, Spectrochim. Acta 1981,
37A, 995-1006.
Keywords: Formaldehyde • Ammonia • Hydrogen cyanide •
[24]
[25]
[26]
[27]
[28]
Selective catalytic reduction •
[1]
[2]
a) K. Cheenkachorn, C. Poompipatpong, C. G. Ho, Energy 2013,
53, 52-57; b) L. Wei, P. Geng, Fuel Process. Technol. 2016, 142,
264-278; c) M. Schwaderlapp, MTZ worldwide 2018, 79, 84-84.
a) G. Centi, S. Perathoner, Greenhouse Gases: Sci. Technol. 2011,
1, 21-35; b) U. Ulmer, T. Dingle, P. N. Duchesne, R. H. Morris, A.
Tavasoli, T. Wood, G. A. Ozin, Nat. Commun. 2019, 10, 3169; c) O.
S. Mendoza-Hernandez, A. Shima, H. Matsumoto, M. Inoue, T. Abe,
Y. Matsuzaki, Y. Sone, Sci. Rep. 2019, 9, 6470; d) W. Davis, M.
Martín, J. Cleaner Prod. 2014, 80, 252-261.
G. Busca. J. Lamotte, J.-C. Lavalley, V. Lorenzelli, J. Am. Chem.
Soc. 1987, 109, 5197-5202.
a) F. Han, M. Yuan, H. Chen, Catal. Today, DOI:
10.1016/j.cattod.2019.07.007; b) N. Xing, X. Wang, A. Zhang, Z. Liu,
X. Guo, Catal. Commun. 2008, 9, 2117-2120; c) K.M.S. Khalil, S.A.
Makhlouf, Appl. Surf. Sci. 2008, 254, 3767-3773; d) M. Signorile, C.
Salvini, L. Zamirri, F. Bonino, G. Martra, M. Sodupe, P. Ugliengo,
Life 2018, 8(4), 42.
[3]
a) G. T. Chala, A. R. Abd Aziz, F. Y. Hagos, Energies 2018, 11,
2934; b) C. Kagiri, L. Zhang, X. Xia, Energies 2019, 12, 2165.
R. J. Farrauto, Science 2012, 337, 659-660.
[29]
[30]
Z. Liu, B. Lv, D. Wu, Y. Sun, Y. Xu, Eur. J. Inorg. Chem. 2012, 4076-
4081.
[4]
[5]
a) T. W. Hesterberg, C. A. Lapin, W. B. Bunn, Environ. sci. technol.
2008, 42, 6437-6445; b) G. Karavalakis, M. Hajbabaei, T. D. Durbin,
K. C. Johnson, Z. Zheng, W. J. Miller, Energy 2013, 50, 280-291.
a) P. Singh, Varun, S. R. Chauhan, Renew. Sust. Energ. Rev. 2016,
63, 269-291; b) J. Kagawa, Toxicology 2002, 181-182, 349-353.
D. B. Olsen, B. D. Willson, Energy Power Eng. 2011, 3, 574.
a) T. Schedlbauer, P. Lott, M. Casapu, H. Störmer, O.
Deutschmann, J.-D. Grunwaldt, Top. Catal. 2019, 62, 198-205; b)
A. Gremminger, J. Pihl, M. Casapu, J.-D. Grunwaldt, T. J. Toops, O.
Deutschmann, Appl. Catal. B 2020, 265, 118571; c) C. Zhang, F.
a) C. Paolucci, A. A. Verma, S. A. Bates, V. F. Kispersky, J. T. Miller,
R. Gounder, W. N. Delgass, F. H. Ribeiro, W. F. Schneider, Angew.
Chem. Int. Ed. 2014, 53, 11828-11833; b) D. E. Doronkin, F. Benzi,
L. Zheng, D. Sharapa, L. Amidani, F. Studt, P. W. Roesky, M.
Casapu, O. Deutschmann, J.-D. Grunwaldt, J. Phys. Chem. C 2019.
H. Zhao, R. G. Tonkyn, S. E. Barlow, B. E. Koel, C. H. F. Peden,
Appl. Catal. B 2006, 65, 282-290.
[6]
[7]
[8]
[31]
[32]
N. Liu, X. Yuan, B. Chen, Y. Li, R. Zhang, Catal. Today 2017, 297,
201-210.
5
This article is protected by copyright. All rights reserved.