European Journal of Inorganic Chemistry
10.1002/ejic.201900715
Toluene-d
2
8
8
, 298 K) δ 7.27 (dd, J = 7.7, 1.9 Hz, 2H), 7.21 (t, J = 7.6 Hz,
H), 7.17 (d, J = 8.2 Hz, 2H), 7.11 (dd, J = 7.7, 1.9 Hz, 2H), 6.89 (dd, J =
.3, 7.0 Hz, 2H), 6.74 (d, J = 7.0 Hz, 2H), 4.40 (t, J = 5.0 Hz, 2H), 3.91
analysis of metal complexes and chemical analysis of polymers
by ESI mass spectrometry and in particular to Prof. Dr. Andreas
Grohmann for fruitful discussion. We appreciate Dr. Viacheslav
A. Kuropatov (IOMC RAS) for the registration of EPR spectra
and Dr. Ivan D. Grishin (Nizhniy Novgorod State University) for
the recording of MALDI TOF mass spectra of PLA.
(
2
hept, J = 6.8 Hz, 2H), 3.23 (t, J = 4.9 Hz, 2H), 2.84 (hept, J = 6.8 Hz, 2H),
.76 (s, 3H), 1.50 (d, J = 6.8 Hz, 6H), 1.30 (d, J = 6.8 Hz, 6H), 1.11 (d,
J = 6.8 Hz, 6H), 0.90 (d, J = 6.8 Hz, 6H). We could not obtain the
13
appropriate C NMR data for alkoxy chloride complex 3 due to its
-
1
insufficient solubility. IR (Nujol) ν/cm : 1324 (m, C–N), 1140 (s, C–O),
110 (s, C–O).
1
Keywords: titanium • bis(arylimino)acenaphthenes • non-
innocent ligands • ring-opening polymerization • L-lactide
(
2
dpp-bian)TiOBnCl (4). A solution of 0.98 equiv. benzyl alcohol (0.105
g, 0.98 mmol) in toluene (2 ml) was added dropwise to a toluene solution
of 1, prepared from 0.5 g (1.0 mmol) of dpp-bian in 25 ml toluene, under
constant stirring at room temperature. The color of the reaction mixture
changed from green to blue-violet. The solvent was evaporated in vacuo
and n-heptane (30 ml) was added. Within few minutes complex 4
precipitated as a dark-blue crystalline solid which was filtered off, washed
with n-heptane and dried in vacuo. Total yield: 0.34 g (47 %). Anal. calc.
[
1]
S. Dutta, W. C. Hung, B. H. Huang, C. C. Lin, in Synthetic
Biodegradable Polymers, Vol. 245 (Eds.: B. Rieger, A. Kunkel, G. W.
Coates, R. Reichardt, E. Dinjus, T. A. Zevaco), Springer-Verlag Berlin,
Berlin, 2012, pp. 219-283.
[
[
2]
3]
A.-C. Albertsson, I. K. Varma, Biomacromolecules 2003, 4, 1466-1486.
a) E. J. Lee, K. M. Lee, J. Jang, E. Kim, J. S. Chung, Y. Do, S. C. Yoon,
S. Y. Park, J. Mol. Catal. A: Chem. 2014, 385, 68-72; b) L. Wang, V.
Poirier, F. Ghiotto, M. Bochmann, R. D. Cannon, J.-F. Carpentier, Y.
Sarazin, Macromolecules 2014, 47, 2574-2584; c) L. Wang, S.-C.
Rosca, V. Poirier, S. Sinbandhit, V. Dorcet, T. Roisnel, J.-F. Carpentier,
Y. Sarazin, Dalton Trans. 2014, 43, 4268-4286.
for C43
2 2
H47Cl N OTi: C, 71.08; H, 6.52; N, 3.86 %. Found: C, 70.92; H,
-
1
6
.70; N, 3.67 %. IR (Nujol) ν/cm : 1506 (s, C–N), 1059 (s, C–O). EPR
47, 49
35, 37
(
330 K, toluene): g
i
= 1.997, a
i
(
Ti) = 0.556, a
i
(2 ×
Cl) = = 0.129
14
and a
i
(2 × N) = 0.071 mT.
[
4]
a) C. Robert, T. E. Schmid, V. Richard, P. Haquette, S. K. Raman, M.-N.
Rager, R. M. Gauvin, Y. Morin, X. Trivelli, V. Guerineau, I. del Rosal, L.
Maron, C. M. Thomas, J. Am. Chem. Soc. 2017, 139, 6217-6225; b) E.
Rufino-Felipe, N. Lopez, F. A. Vengoechea-Gomez, L.-G. Guerrero-
Ramirez, M.-A. Munoz-Hernandez, Appl. Organometal. Chem. 2018, 32,
https://doi.org/10.1002/aoc.4315; c) R. Zaremba, M. Dranka, B.
Trzaskowski, L. Checinska, P. Horeglad, Organometallics 2018, 37,
Typical Procedure for the Polymerization of L-Lactide. A 20 ml vial
equipped with Teflon screw cap and magnetic stirrer was loaded with 8
ml of a toluene solution which contains 5.0 mmol of L-lactide. An
appropriate amount of a catalyst was added as a toluene solution (2 ml)
under vigorous stirring. The vial was capped tightly and stirred at 70 °C
within the required time. The monomer conversion was determined by
H NMR spectroscopy. For this purpose a solution aliquot was taken to
the NMR tube, the solvent was removed in a vacuo, and the dry residue
1
was dissolved in chloroform-d . PLA was isolated from the reaction
1
4
585-4598; d) D. Zhu, L. Guo, W. Zhang, X. Hu, K. Nomura, A. Vignesh,
X. Hao, Q. Zhang, W.-H. Sun, Dalton Trans. 2019, 48, 4157-4167.
R. Petrus, P. Sobota, Coord. Chem. Rev. 2019, 396, 72-88.
J.-F. Carpentier, Organometallics 2015, 34, 4175-4189.
[5]
[6]
[7]
mixture by quenching it with hexanes. The polymer as white
nontransparent flakes was washed on the filter with hexanes and dried in
vacuo. The product yield in all the experiments was 85–90%.
J.-F. Carpentier, Y. Sarazin, Top. Organomet. Chem. 2013, 45, 141-
189.
[8]
a) A. Sauer, A. Kapelski, C. Fliedel, S. Dagorne, M. Kol, J. Okuda,
Dalton Trans. 2013, 42, 9007-9023; b) F. Della Monica, E. Luciano, G.
Roviello, A. Grassi, S. Milione, C. Capacchione, Macromolecules 2014,
47, 2830-2841; c) C.-Y. Tsai, H.-C. Du, J.-C. Chang, B.-H. Huang, B.-T.
Ko, C.-C. Lin, RSC Adv. 2014, 4, 14527-14537; d) D. Chakraborty, D.
Mandal, V. Ramkumar, V. Subramanian, J. Vijaya Sundar, Polymer
2015, 56, 157-170; e) B. Rajashekhar, S. K. Roymuhury, D.
Chakraborty, V. Ramkumar, Dalton Trans. 2015, 44, 16280-16293; f) D.
Mandal, D. Chakraborty, V. Ramkumar, D. K. Chand, RSC Adv. 2016,
6, 21706-21718; g) M. Mandal, U. Monkowius, D. Chakraborty, New J.
Chem. 2016, 40, 9824-9839; h) S. Pappuru, D. Chakraborty, J. Vijaya
Sundar, S. K. Roymuhury, V. Ramkumar, V. Subramanian, D. K. Chand,
Polymer 2016, 102, 231-247; i) S. Pappuru, D. Chakraborty, V.
Ramkumar, D. K. Chand, Polymer 2017, 123, 267-281.
X-ray crystallography
The data of the single-crystal X-ray structure analysis were collected at
1
50 K (2 and 3) and 298 K (4) with an Agilent SuperNova diffractometer
equipped with an Atlas CCD-detector Sapphire S, using graphite-
monochromated Cu-Kα radiation (λ = 1.54184 Å). Suitable crystals were
attached to glass fibers using perfluoropolyalkylether oil (Supplier:
ABCR) and transferred to a goniostat, where if necessary, they were
cooled to 150 K for data collection. The software package used: CrysAlis
[27]
Pro for data collection, cell refinement, and data reduction. The crystal
[28]
structure was solved by direct methods with SHELXT and refined on
2
[29]
[30]
F
using full-matrix least-squares with SHELXL as part of Olex2 . All
non-hydrogen atoms were refined anisotropically. Carbon-bonded
hydrogen atoms were refined isotropically with riding models.
Crystallographic details are given in the Supporting Information
[9]
A. G. Morozov, I. L. Fedushkin, E. Irran, A. Grohmann, Inorg. Chem.
Commun. 2018, 95, 50-55.
(
Table S1, SI). CCDC 1936221 (2), 1936222 (3), and 1936223 (4)
[10] a) I. L. Fedushkin, A. G. Morozov, M. Hummert, H. Schumann, Eur. J.
Inorg. Chem. 2008, 1584-1588; b) I. L. Fedushkin, A. G. Morozov, V. A.
Chudakova, G. K. Fukin, V. K. Cherkasov, Eur. J. Inorg. Chem. 2009,
4995-5003.
contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
[
[
[
11] A. G. Morozov, I. L. Fedyushkin, D. Y. Aleinik, Russ. J. Appl. Chem.
2016, 89, 2095-2101.
12] O. V. Kazarina, C. Gourlaouen, L. Karmazin, A. G. Morozov, I. L.
Fedushkin, S. Dagorne, Dalton Trans. 2018, 47, 13800-13808.
13] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
Acknowledgments
We thank the Russian Science Foundation (grant 17-73-20356)
for financial support of this work. We are grateful to the Institute
of Chemistry of TU Berlin for providing the X-ray diffraction
[14] M. Moscherosch, W. Kaim, J. Chem. Soc., Perkin Trans. 2 1992, 1493-
1496.
[
15] I. L. Fedushkin, O. V. Maslova, A. G. Morozov, S. Dechert, S.
Demeshko, F. Meyer, Angew. Chem. Int. Ed. 2012, 51, 10584-10587.
This article is protected by copyright. All rights reserved.