2
R. Mehnert, in Radical Ionic Systems: Properties in condensed
Phases, ed. A. Lund and M. Shiotani, Kluwer, Dordrecht, The
Netherlands, 1991, p. 231.
however, no concomitant radical formation has been observed
2
for similar scavenger systems.
2
3
4
5
6
7
O. Brede, D. Beckert, C. Windolph and H. A. Go
Chem., 1998, 102, 1457.
R. Mehnert, O. Brede and W. Naumann, Ber. Bunsen-Ges. Phys.
Chem., 1982, 86, 525.
O. Brede, R. Hermann, W. Naumann and S. Naumov, J. Phys.
Chem. A, 2002, 106, 1398.
O. Brede, R. Hermann, S. Naumov, G. P. Perdikomatis, A. K.
Zarkadis and M. G. Siskos, Chem. Phys. Lett., 2003, 376, 370.
O. Brede, R. Hermann, S. Naumov, G. P. Perdikomatis, A. K.
Zarkadis and M. G. Siskos, Phys. Chem. Chem. Phys, 2004, 6,
¨
ttinger, J. Phys.
Conclusion
Finally, the time ranges of the single reaction steps which are
relevant for the elucidation of the phenomenon of the free
electron transfer should be considered: The reactants approach
in solution by diffusion. For the used millimolar concentra-
tions, this process needs several tenths of ns. This can be well
analyzed with the time resolution of our pulse radiolysis setup
(
5 ns). Already in the first encounter the electron should jump
2
267.
from the phenol to the parent solvent radical cation. Because of
this rapid jump, the diversity of phenol conformers differing in
the C– –OH group angles should be reflected in the newly
formed radical cation. So, at least two types of radical cations
are formed
8
O. Brede, G. R. Mahalaxmi, S. Naumov, W. Naumann and
R. Hermann, J. Phys. Chem. A, 2001, 105, 3757.
O. Brede, Res. Chem. Intermed., 2001, 27, 709.
G. R. Mahalaxmi, R. Hermann, S. Naumov and O. Brede, Phys.
Chem. Chem. Phys., 2000, 2, 4947.
9
0
1
1
1
O. Brede, H. Orthner, V. Zubarev and R. Hermann, J. Phys.
Chem., 1996, 100, 7097.
(
i) a stable one with charge distribution over the whole
molecule, which relaxes and overcomes up to several hundred ns;
ii) an unstable one with charge preferrably localized at the
12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.
C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Ragha-
vachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,
S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A.
Pople, GAUSSIAN 03, (Revision B.02), Gaussian, Inc.,
Pittsburgh PA, 2003.
(
oxygen, which deprotonates during the first C–O 2 H bond
oscillation, i.e. in about 10 fs.
Experience has shown that the relaxation of the products by
distributing the excess energy to the surrounding proceeds in
2
1
some picoseconds. However, as shown in this paper, it is
without mechanistic consequence in the investigated case.
The free electron transfer as the experimentally observed
gross reaction (2) is diffusion controlled and, therefore, there is
no chance of improving the time resolution of the investigation
from the nanosecond to a smaller time-scale.
So, as something like an exotic case, a bimolecular electron
transfer reaction has been found which reflects the variety of
5
,10,11
rotamers for a solute molecule.
Studies still in progress
show that this phenomenon is not only limited on phenol-like
compounds. Similar reaction behaviour should be observed in
all cases where intramolecular molecule motions are connected
with electron shifts which lead to different types of radical
cations. In the simplest case, the process can be identified if one
cation is stable and the other one rapidly forms dissociation
products. As a further example, the ionization of benzyl-
13
14
15
A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
A. D. Becke, J. Chem. Phys., 1996, 104, 1040.
Ch. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1987, 37, 785.
16 G. R. Mahalaxmi, S. Naumov, R. Hermann and O. Brede, Chem.
Phys. Lett., 2001, 337, 335.
1
7
G. V. Buxton, C. L. Greenstock, W. P. Helman and A. Ross,
J. Phys. Chem. Ref. Data, 1988, 17, 513.
Z. B. Alfassi and R. H. Schuler, J. Phys. Chem., 1985, 89, 3359.
Z. B. Alfassi, R. E. Huie, P. Neta and L. C. T. Shoute, J. Phys.
Chem., 1990, 94, 8800.
6
,7
trimethylsilanes has been reported recently.
1
1
8
9
In this paper, as the deciding factor of influence on FET the
rotation ability of the substituent at the aromatic ring has been
demonstrated experimentally.
20 R. Joshi, S. Naumov, S. Kapoor, T. Mukherjee, R. Hermann and
O. Brede, J. Phys. Org. Chem., 2004, 17, 665.
2
1
E. S. Medvedev and V. I. Osherov, Radiationless Transitions in
Polyatomic Molecules, Springer Series in Chemical Physics 57,
Springer, Berlin, 1995, p. 36.
References
1
O. Brede, R. Mehnert and W. Naumann, Chem. Phys., 1987, 115,
79.
22 W. H. Hamill, in Radical Ions, eds. E. T. Kaiser, L. Kevan, Wiley-
Interscience, New York, 1968, p. 321.
2
5
188
P h y s . C h e m . C h e m . P h y s . , 2 0 0 4 , 6 , 5 1 8 4 – 5 1 8 8
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 4