ChemComm
Communication
This work was financially supported by the 973 Program
(2013CB933800, 2013CB834505), National Natural Science Foun-
dation of China (21222210, 21072202, 91027041), and the Chinese
Academy of Sciences (100 Talents Program).
Notes and references
1 (a) M. Xue, Y. Yang, X. Chi, Z. Zhang and F. Huang, Acc. Chem. Res.,
2012, 45, 1294–1308; (b) H. Zhang and Y. Zhao, Chem. – Eur. J., 2013,
19, 16862–16879; (c) T. Ogoshi, S. Kanai, S. Fujinami, T. A. Yamagishi
and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130, 5022–5023; (d) D. Cao,
Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, Angew. Chem., Int. Ed.,
2009, 48, 9721–9723.
2 (a) G. Yu, M. Xue, Z. Zhang, J. Li, C. Han and F. Huang, J. Am. Chem.
Soc., 2012, 134, 13248–13251; (b) G. Yu, Y. Ma, C. Han, Y. Yao,
G. Tang, Z. Mao, C. Gao and F. Huang, J. Am. Chem. Soc., 2013, 135,
10310–10313; (c) T. Ogoshi, T. Aoki, R. Shiga, R. Iizuka, S. Ueda,
K. Demachi, D. Yamafuji, H. Kayama and T. A. Yamagishi, J. Am.
Chem. Soc., 2012, 134, 20322–20325; (d) W. Chen, Y. Zhang, J. Li,
X. Lou, Y. Yu, X. Jia and C. Li, Chem. Commun., 2013, 49, 7956–7958.
3 (a) G. Yu, X. Zhou, Z. Zhang, C. Han, Z. Mao, C. Gao and F. Huang,
J. Am. Chem. Soc., 2012, 134, 19489–19497; (b) L. Wu, Y. Fang, Y. Jia,
Y. Yang, J. Liao, N. Liu, X. Yang, W. Feng, J. Ming and L. Yuan,
Dalton Trans., 2014, 43, 3835–3838; (c) W. Si, L. Chen, X.-B. Hu,
G. Tang, Z. Chen, J.-L. Hou and Z.-T. Li, Angew. Chem., Int. Ed., 2011,
50, 12564–12568; (d) X.-B. Hu, Z. Chen, G. Tang, J.-L. Hou and
Z.-T. Li, J. Am. Chem. Soc., 2012, 134, 8384–8387; (e) S. Grunder,
P. L. McGrier, A. C. Whalley, M. M. Boyle, C. Stern and J. F. Stoddart,
J. Am. Chem. Soc., 2013, 135, 17691–17694; ( f ) Q. Duan, Y. Cao, Y. Li,
X. Hu, T. Xiao, C. Lin, Y. Pan and L. Wang, J. Am. Chem. Soc., 2013, 135,
10542–10549.
4 (a) Y. Chen, D. Cao, L. Wang, M. He, L. Zhou, D. Schollmeyer and
H. Meier, Chem. – Eur. J., 2013, 19, 7064–7070; (b) M. Ni, X.-Y. Hu,
J. Jiang and L. Wang, Chem. Commun., 2014, 50, 1317–1319.
5 (a) Z. Zhang, C. Han, G. Yu and F. Huang, Chem. Sci., 2012, 3,
3026–3031; (b) Z. Zhang, G. Yu, C. Han, J. Liu, X. Ding, Y. Yu and
F. Huang, Org. Lett., 2011, 13, 4818–4821; (c) K. Wang, C.-Y. Wang,
Y. Wang, H. Li, C.-Y. Bao, J.-Y. Liu, S. X.-A. Zhang and Y.-W. Yang,
Chem. Commun., 2013, 49, 10528–10530.
6 (a) Z. Zhang, Y. Luo, J. Chen, S. Dong, Y. Yu, Z. Ma and F. Huang,
Angew. Chem., Int. Ed., 2011, 123, 1433–1437; (b) X.-Y. Hu, X. Wu,
Q. Duan, T. Xiao, C. Lin and L. Wang, Org. Lett., 2012, 14, 4826–4829.
7 (a) B. Xia, B. Zheng, C. Han, S. Dong, M. Zhang, B. Hu, Y. Yu and
F. Huang, Polym. Chem., 2013, 4, 2019–2024; (b) H. Zhang,
N. L. Strutt, R. S. Stoll, H. Li, Z. Zhu and J. F. Stoddart, Chem.
Commun., 2011, 47, 11420–11422.
8 (a) T. J. Kucharski and R. Boulatov, J. Mater. Chem., 2011, 21,
8237–8255; (b) Z. Huang, Q.-Z. Yang, D. Khvostichenko, T. J.
Kucharski, J. Chen and R. Boulatov, J. Am. Chem. Soc., 2009, 131,
1407–1409; (c) Q.-Z. Yang, Z. Huang, T. J. Kucharski, D. Khvostichenko,
J. Chen and R. Boulatov, Nat. Nanotechnol., 2009, 4, 302–306;
(d) Z. Huang and R. Boulatov, Chem. Soc. Rev., 2011, 40, 2359–2384;
(e) S. Akbulatov, Y. Tian and R. Boulatov, J. Am. Chem. Soc., 2012, 134,
7620–7623; ( f ) T. J. Kucharski, Y. Tian, S. Akbulatov and R. Boulatov,
Energy Environ. Sci., 2011, 4, 4449–4472; (g) J.-F. Xu, Y.-Z. Chen, D. Wu,
L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Angew. Chem., Int. Ed., 2013, 52,
9738–9742; (h) J.-F. Xu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z.
Yang, Org. Lett., 2014, 16, 684–687.
Scheme 4 The structure of Z-5 reported in reference and the illustra-
tions of the photoisomerization processes of Z-1.
pseudorotaxane (photoisomerization of the CQC bond and host–
guest decomplexation, Scheme 4) must occur sequentially. Two
limiting mechanisms are plausible. In a small-molecule analogy
of the power-stroke mechanism,8d,14 absorption of a photon by the
Z chromophore of the pseudorotaxane quickly generates a highly
strained transoid form of the CQC bond. It then slowly (ms) relaxes,
by thermally activated decomplexation (yielding the E isomer) or
thermal isomerization of the highly strained CQC bond (yielding
the reactant). Compressive loads on E-olefins are known to increase
the quantum yield of E - Z photoisomerization and the rate of
thermal E - Z isomerization.8b If the power-stroke mechanism
dominates photodethreading of Z-1 and Z-5, the difference in
photochemical behaviour of Z-1 and Z-5 suggests that either the
quantum yield of E - Z photoisomerization of stiff stilbene is less
sensitive to load than that of the olefin in Z-5, or the larger barrier of
E - Z isomerization of stiff stilbene prevents it from unproductive
relaxation back to Z-1 before undergoing thermal relaxation.
In the alternative (Brownian ratchet),15 photoisomerization occurs
only in the non-pseudorotaxane fraction of Z-1 or Z-5 (i.e., the fraction
+
in which imidazole and pillar[5]arene of Z-1 or R2NH2 /crown ether
of Z-5 are uncomplexed). This thermally populated minor fraction is
trapped by photoisomerization. The dominance of this mechanism
would be suggested if the self-associated constants of Z-1 were
considerably lower than Z-5. We are currently conducting experi-
mental and computational studies to probe these possibilities.
In conclusion, we reported a photoresponsive monofunction-
alized pillar[5]arene based on stiff stilbene. The two isomers of the
molecule, Z-1/E-1, exhibited different self-assembly behaviour. Z-1
forms self-complexing [1]pseudorotaxanes and [c2] daisy chains,
depending on concentration. E-1 tends to form linear polymers,
whose degree of polymerization is sensitive to solution pH. The
complexation of pillar[5]arene/imidazole does not prevent photo-
9 (a) J.-F. Xu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung and Q.-Z. Yang, Org.
Lett., 2013, 15, 6148–6151; (b) C. Li, L. Zhao, J. Li, X. Ding, S. Chen,
Q. Zhang, Y. Yu and X. Jia, Chem. Commun., 2010, 46, 9016–9018;
(c) S. Dong, J. Yuan and F. Huang, Chem. Sci., 2014, 5, 247–252.
10 Y. Liu, Z. Wang and X. Zhang, Chem. Soc. Rev., 2012, 41, 5922–5932.
11 (a) X. Wang, K. Han, J. Li, X. Jia and C. Li, Polym. Chem., 2013, 4,
3998–4003; (b) X.-Y. Hu, X. Wu, S. Wang, D. Chen, W. Xia, C. Lin,
Y. Pan and L. Wang, Polym. Chem., 2013, 4, 4292–4297.
12 D.-H. Qu and B. L. Feringa, Angew. Chem., Int. Ed., 2010, 49,
1107–1110.
isomerization of Z stiff stilbene in Z-1. Our studies reveal subtle 13 T. J. Kucharski and R. Boulatov, Optical Nano and Micro
Actuator Technology, 2012, ch. 3, pp. 83–106.
14 Z. Huang and R. Boulatov, Pure Appl. Chem., 2010, 82, 757–1063.
15 E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed., 2007,
correlation between monomer structure and aggregation beha-
viour which may yield insights into the behaviour of existence and
help design new photoresponsive supramolecular self-assemblies.
46, 72–191.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 7001--7003 | 7003