H. Grennberg and J.-E. Bäckvall
FULL PAPER
Allylic acetoxylations of 1: These reactions were carried out on a 0.25 mmol
scale in acetic acid (1 mL). The reaction product was, after extractive
workup[8] and removal of most of the solvent, compared with an authentic
sample. The mechanism involving acetoxypalladation would give an 1H
NMR integration ratio of 1-acetoxy-2-cyclohexene for protons H3, H2, and
H1 (at d 5.94, 5.69 and 5.25, respectively) of 1:(1 xD):(1 xD), where xD
is the relative amount of deuterium in the vinylic position of the starting
cyclohexene. For a (p-allyl)palladium mechanism, the corresponding ratio
would be 0.5(2 xD):(1 xD):0.5(2 xD).
[5] a) H. Grennberg, J. E. Bäckvall, in Transition Metals for Fine
Chemicals and Organic Synthesis (Eds.: C. Bolm, M. Beller), VCH
Weinheim, 1998; b) A. Heumann, B. kermark, Angew Chem. 1984,
96, 443; Angew. Chem. Int. Ed. Engl. 1984, 23, 453; c) A. Heumann, B.
kermark, S. Hansson, T. Rein, Organic Synthesis, Vol. 68, pp. 109;
d) A. Heumann, M. Reglier, B. Waegell, Angew. Chem. 1982, 94, 397;
Angew. Chem. Int. Ed. Engl. 1982, 18, 366; e) B. Principato, M. Maffei,
C. Siv, G. Buono, G. Peiffer, Tetrahedron, 1996, 52, 2087.
Ï
Â
[6] J. E. McMurry, P. Kocovsky, Tetrahedron Lett. 1984, 25, 4187.
[7] S. Hansson, A. Heumann, T. Rein, B. kermark, J. Org. Chem. 1990,
55, 975.
Allylic acetoxylation of 1-acetoxy-2-cyclohexene and diallylic acetoxyla-
tions: These reactions were carried out under allylic acetoxylation
conditions with either 1-acetoxy-2-cyclohexene, protic cyclohexene, or
deuterated cyclohexene 1 as the substrate. The reaction products were,
after extractive workup[8] and removal of most of the solvent, compared
with authentic samples of 1-acetoxy-2-cyclohexene and 1,4-diacetoxy-2-
cyclohexenes. In the oxidation of 1, a mechanism involving two (p-allyl)
[8] a) J. E. Bäckvall, R. B. Hopkins, H. Grennberg, M. M. Mader, A. K.
Awasthi, J. Am. Chem. Soc. 1990, 112, 5160; b) S. E. Byström, E. M.
Larsson, B. kermark, J. Org. Chem. 1990, 55, 5674; c) E. M. Larsson,
B. kermark, Tetrahedron Lett. 1993, 34, 2523; d) H. Grennberg, K.
Bergstad, J. E. Bäckvall, J. Mol. Catal. A 1996, 113, 355; e) K.
Bergstad, H. Grennberg, J. E. Bäckvall, Organometallics, 1998, 17, 45.
[9] C. Jia, P. Müller, H. Mimoun, J. Mol. Catal. A 1995, 101, 127.
[10] An extension to allow carboxylate nucleophiles other than acetate has
further increased the utility of the reaction. See: B. kermark, E. M.
Larsson, J. D. Oslob, J. Org. Chem. 1994, 59, 5729.
1
intermediates would give an H NMR integration ratio for protons (H1
H4) to (H3 H4) (at d 5.91 (cis) 5.89 (trans) and 5.32 (trans) 5.23
(cis), respectively) of 0.5(4 xD):0.5(4 3xD), [i. e. (4 xD)/(4 3xD):1],
whereas the corresponding ratio for a mechanism involving an acetoxy-
palladation ± b-elimination followed by a (p-allyl) intermediate would be
(2 xD):(2 xD), (i. e. 1:1).
[11] P. M. Henry, in Palladium-Catalyzed Oxidation of Hydrocarbons,
Reidel Publishing Co, Dordrecht, 1980, pp. 103.
Isomerization of 1 during allylic acetoxylation: This was observed as a loss
of deuterium at C2 in the product relative to what was expected from either
mechanism. The sum of the integrals of H1, H2, and H3 had a value less
than that expected from the amount of deuterium in the substrate. The
observed integrals is the sum of the contributions from intermediate 5 [A, 2
and 3, IH2 1 xD, IH3 0.5(2 xD)], and from the (p-allyl) 18 formed
[12] W. Kitching, Z. Rappoport, S. Winstein, W. G. Young, J. Am. Chem.
Soc. 1966, 88, 2054.
[13] P. M. Henry, G. A. Ward, J. Am. Chem. Soc. 1971, 93, 1494.
[14] a) S. Wolfe, P. G. C. Campbell, J. Am. Chem. Soc. 1971, 93, 1497;
b) ibid. 1971, 93, 1499.
[15] For example: a) R. G. Brown, R. V. Chaudhar, J. M. Davidsson, J.
Chem. Soc. Dalton Trans. 1977, 176; b) B. M. Trost, P. J. Metzner, J.
Am. Chem. Soc. 1980, 102, 3572; c) J. E. Bäckvall, K. Zetterberg, B.
kermark, in Inorganic Reactions and Methods (Ed.: A. P. Hagen),
VCH, Weinheim 1991, Vol. 12A, pp. 123; d) D. R. Chrisope, P. Beak,
W. H. Saunders, J. Am. Chem. Soc. 1988, 110, 230.
[16] a) J. E. Bäckvall, R. E. Nordberg, E. Björkman, C. Moberg, J. Chem.
Soc. Chem. Commun. 1980, 943; b) J. E. Bäckvall, R. E. Nordberg, D.
Wilhelm, J. Am. Chem. Soc. 1985, 107, 6892; c) H. Grennberg, V.
Langer, J. E. Bäckvall, J. Chem. Soc. Chem. Commun. 1991, 1190.
[17] E. N. Frankel, W. K. Rohwedder, W. E. Neff, D. Weisleder, J. Org.
Chem., 1975, 40, 3272.
from the rearranged starting material [B, 10 and 11, IH2 1 and IH3
0.5(2 xD)]. Also, A B 1 (100% product), thus A (1 IH2, rel)/xD
and IH2, rel IH2, obs [0.5(2 xD)]/IH3, obs, since IH3 0.5(2 xD) for all values
of A and B.
Homoallylic acetoxylation: This was performed as for the allylic acetox-
ylations with protic cyclohexene or 1 as the substrate in acetic acid or in
[D4]acetic acid, but in the presence of CH3SO3H (100 mol%). The reaction
product was, after extractive workup[8] and removal of most of the solvent,
compared with an authentic sample. For 1,
a mechanism involving
acetoxypalladation and a 1,3-hydrogen shift would give a integration ratio
for hydrogens 1:2:(3 4) (at d 5.0, 2.4, and 5.7 5.6) of (1 xD):(2
xD):2, (i. e. 0.27:1.27:2 for xD 0.73). A mechanism involving a (p-allyl)
intermediate would lead to a ratio of [0.5(2 xD)]:(2 xD):[0.5(4 xD)]
(i. e. 0.63:1.27:1.63). The results are in greater accord with the latter
mechanism, however with the integral for H3 H4 smaller than expected.
This is probably due to allylic acetate rearrangement.[42]
[18] H. Grennberg, V. Simon, J. E. Bäckvall, J. Chem. Soc. Chem.
Commun. 1994, 265.
[19] This is of importance since a (p-allyl) intermediate would yield allylic
acetates from the attack of the acetate nucleophile at C1 and C3,
whereas in acetoxypalladation the acetoxylation occurs at C1 and C2
(see Scheme 2).
Ê
[20] B. kermark, S. Hansson, T. Rein, J. Vagberg, A. Heumann J. E.
Acknowledgments: Financial support from the Swedish National Science
Research Council is gratefully acknowledged.
Bäckvall, J. Organomet. Chem. 1989, 369, 433.
[21] a) See refs [5 ± 10]; b) H. Grennberg, unpublished results from our
laboratory.
[22] G. Ahlgren, B. kermark, K. I. Dahlquist, Acta Chem. Scand. 1968,
22, 1129. The concentration of SO3 in commercial concentrated D2SO2
is probably insufficient for complete enolization of the substrate.
[23] The amount of deuterium (xD) in the two vinylic positions was
determined by 1H NMR spectroscopy.
[24] A. Gogoll, H. Grennberg, Magnetic Resonance in Chemistry, 1993, 31,
954.
[25] For a related example of secondary isotope effects in copper chemistry
see: H. L. Goering, V. D. Singleton, J. Am. Chem. Soc. 1976, 98, 7854.
[26] See the Experimental Section.
[27] A 1:1 mixture of allylic acetate (2 and 3) and bis-allylic diacetate (15
and 16) was obtained.
[28] With this oxidation system, numerous additional products were
observed by capillary GLC. No attempt at isolation or identification
of these side-products was made.
[29] B. M. Trost, P. E. Strege, Tetrahedron Lett. 1974, 2603.
[30] Wolfe et al. suggested that a chloro complex reacts by different
reaction pathways than does the corresponding acetato complex. See
ref. [14b].
[31] For example: a) L. E. Overman, F. M. Knoll, Tetrahedron Lett. 1979,
321; b) J. Clayden, E. W. Collington, S. Warren, ibid, 1992, 33, 7039;
c) P. M. Henry, J. Am. Chem. Soc. 1972, 94, 5200; d) L. E. Overman,
November 17, 1997 [F894]
[1] Encyclopedia of Reagents for Organic Synthesis (Ed.: L. A. Paquette),
Wiley, New York 1995.
[2] For example: L. M. Stephenson, M. R. Grdina, M. Orfanopoulos, Acc.
Chem. Res. 1980, 13, 419.
[3] a) M. A. Umbreit, K. B. Sharpless, J. Am. Chem. Soc. 1977, 99, 5526;
b) L. M. Stevenson, D. R Speth, J. Org. Chem. 1979, 44, 4683;
c) K. B.Sharpless, R. F. Lauer, J. Am. Chem. Soc. 1972, 94, 7154;
d) K. B. Sharpless, R. P. Lauer, J. Org. Chem. 1974, 39, 429; e) H. J.
Reich, J. Org. Chem. 1974, 39, 428; f) H. J. Reich, S. Wollowitz, J. E.
Trend, F. Chow, D. F. Wendelborn, ibid. 1978, 43, 1697; g) T. Hori,
K. B. Sharpless, ibid. 1978, 43, 1689; h) L. Engman, ibid. 1989, 54, 889.
[4] a) For a review, see: J. Muzart, Bull. Soc. Chim. Fr. 1986, 65; b) For
recent enantioselective applications see: A. S. Gokhale, A. B. E.
Minidis, A. Pfaltz, Tetrahedron Lett. 1995, 36, 1831; M. N. Andrus,
A. B. Argade, X. Chen, M. G. Pamment, ibid. 1995, 36, 2945; C.
Zondervan, B. L. Feringa, Tetrahedron Asymmetry 1996, 7, 1898; A. D.
Gupta, V. K. Sing, Tetrahedron Lett. 1996, 37, 2633; M. J. Södergren,
P. G. Andersson, ibid. 1996, 37, 7577.
1088
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
0947-6539/98/0406-1088 $ 17.50+.50/0
Chem. Eur. J. 1998, 4, No. 6