JOURNAL PRE-PROOF
2
Tetrahedron
O
O
CHO
for the critical oxidative ring contraction. To our delight,
treatment of 7 with aqueous H2O2 smoothly afforded (+)-
austrodoric acid (2) in 93% yield without detection of the C-C
bond cleavage product. Based on our previous hypothesis,
nucleophilic addition of H2O2 to α-formyl ketone followed by
cyclization delivered 1,2-dioxolone 8, which underwent a concert
alkyl migration/C-C bond and O-O bond cleavage to give the
desired product. Reduction of (+)-austrodoric acid (1) with
LiAlH4 and subsequent PCC-oxidation gave (+)-austrodoral in
30% yield for two steps. The optical rotations and the spectral
data of synthetic austrodoric acid (2) and austrodoral (1) were in
excellent agreement with those reported for natural product.
CO2H
oxidative
H
ring
constraction
H
H
H
2
austrodoric acid ( )
1
austrodoral ( )
3
O
O
O
H
5
Wieland-Miescher ketone ( )
4
Scheme 1. Retrosynthetic analysis of austrodorane
In conclusion, we described a concise synthesis of the marine
nor-sesquiterpene (+)-austrodoral (1) and (+)-austrodoric acid (2)
from Wieland-Miescher ketone. The key step featured an
oxidative ring contraction of cyclic α-formyl ketones facilitated
by aqueous H2O2 under mild conditions for the stereospecific
construction of the quaternary carbon centers in high efficiency.
In 2017, our group reported an oxidative ring contraction
reaction of cyclic α-formyl ketones promoted by H2O2.12 This
novel protocol was highly regioselective and enables
stereospecific construction of contiguous quaternary all-carbon
centers. To further showcase the synthetic potential of this novel
protocol, the asymmetric synthesis of austrodorane was thus
executed. As shown in Scheme 1, we surmised that austrodoral (1)
Acknowledgments
could be prepared from austrodoric acid (2) via
a
We gratefully acknowledge the financial support from the
Natural Science Foundation of China (201702166 to H.W. and
21722206 to W.X.) and the Scientific Startup Foundation for
Doctors of Northwest A&F University (No. Z109021702).
reduction/oxidation of the carboxylic acid moiety. Austrodoric
acid (2) would in turn arise from α-formyl ketone 3 via oxidative
ring contraction facilitated by the action of H2O2 to
stereospecifically forge the quaternary carbon centers. Bicyclic
ketone 3 could be diastereoselectively accessed via methylation
followed by hydroxymethylation/oxidation of ketone 4, which
was a known compound derived from Wieland-Miescher ketone
3.12
References and notes
1. Fraga, B. M. Nat. Prod. Rep. 2005, 22, 465-486.
2. Kuo, Y.-H.; King, M. L.; Chen, C.-F.; Chen, H.-Y.; Chen, C.-H.; Chen,
K.; Lee, K.-H. J. Nat. Prod. 1994, 57,263-269.
O
O
O
ref. 12
3. Takaishi, Y.; Ujita, K.; Tokuda, H.; Nishino, H.; Iwashima, A. Fujita, T.
Cancer Lett. 1992, 65, 19-26.
4. González, A. G.; Jiménez, I. A.; Ravelo, A. G.; Bazzocchi, I. L.
Tetrahedron 1993, 49, 6637-6644.
5. Duan, H.; Takaishi, Y.; Bando, M.; Kido, M.; Imakura, Y.; Lee, K.
Tetrahedron Lett. 1999, 40, 2969-2972.
6. Gavagnin, M.; Carbone, M.; Mollo, E.; Cimino, G. Tetrahedron Lett.
2003, 44, 1495-1498.
7. (a) Kulcitki, V.; Ungur, N.; Gavagnin, M.; Carbone, M.; Cimino, G.
Tetrahedron: Asymmetry 2004, 15, 423-428. (b) Kulcitki, V.; Ungur, N.;
Gavagnin, M.; Carbone, M.; Cimino, G. Eur. J. Org. Chem. 2005, 1816-
1822.
LDA, CH3I
4 steps
THF, rt
70%, 3:1 dr
O
H
H
6
5
4
KOH,CH2O (37%, aq.)
single diastereoisomer
88%
H
O
OH
O
O
O
Me
H
O
PCC, DCM
56%
H
H
8. (a) Alvarez-Manzaneda, E. J.; Chahboun, R.; Barranco, I.; Torres, E. C.;
Alvarez, E.; Alvarez-Manzaneda, R. Tetrahedron Lett. 2005, 46, 5321-
5324. (b) Alvarez-Manzaneda, E.; Chahboun, R.; Barranco, I.; Cabrera,
E.; Alvarez, E.; Lara, A.; Alvarez-Manzaneda, R.; Hmamouchic, M.; Es-
Samti, H. Tetrahedron 2007, 63, 11943-11951.
O
H
H
H
TS
7
3
H2O2, EtOAc
93%
9. Fujiwara, N.; Kinoshita, M.; Uchida, A.; Ono, M.; Kato, K.; Akita,
Hiroyuki. Chem. Pharm. Bull. 2012, 60, 562-570.
10. Wang, J.-L.; Li, H.-J.; Wang, H.-S.; Wu, Y.-C. Org. Lett. 2017, 19,
3811-3814.
11. Alonso, P.; Pardo, P.; Galvan, A.; Fananas, F. J.; Rodriguez, F. Angew.
Chem., Int. Ed. 2015, 54, 15506-15510.
12. Yu, X.; Hu, J. D.; Shen, Z. G.; Zhang, H.; Gao, J. M.; Xie, W. Q. Angew.
Chem., Int. Ed. 2017, 56, 350-353.
13. (a) Snitman, D. L.; Tsai, M.-Y.; Watt, D. S. J. Org. Chem. 1979, 44,
2838-2842. (b) Dethe, D. H.; Sau, S. K.; Mahapatra S. Org. Lett. 2016,
18, 6392-6395. (c) Wan, K. K.; Iwasaki, K.; Umotoy, J. C.; Wolan, D.
W.; Shenvi, R. A. Angew. Chem., Int. Ed. 2015, 54, 2410-2415.
14. Daniewski, W. M.; Kubak, E.; Jurczak, J. J. Org. Chem. 1985, 50, 3963-
3965.
15. Wipf, P.; Aslan, D. C. J. Org. Chem. 2001, 66, 337-343.
16. (a) House, H. O.; Trost, B. M. J. Org. Chem. 1965, 30, 2502-2512. (b)
Kuehne, M. E. J. Org. Chem. 1970, 35, 171-175.
O
O
HO
H
CO2H
1. LiAlH4, THF
CHO
OH
H
2. PCC, DCM
30% for two steps
HCOOH
H
H
1
austrodoral ( )
2
austrodoric acid ( )
8
Scheme 2. Total synthesis of austrodoric acid and austrodoral
As illustrated in Scheme 2, our synthesis commenced with the
preparation of bicyclic ketone 4 from Wieland-Miescher ketone 5
in four steps according to the literature procedure.13 α-
Methylation of ketone 4 mediated with LDA/MeI gave ketone 6
in 70% yield with 3:1 dr,14 which was inconsequential for the
next step. Fortunately, introduction of hydroxymethyl group was
successfully realized as a single diastereoisomer by treating
ketone 6 with formalin in basic medium (KOH/MeOH) at 60
oC.15 This may be rationalized by sever steric hindrance from the
axial methyl for the β attack in the transition state TS, which
favored the approach of electrophile from the α-face to give the
cis product 7.16 Oxidation of ketone 7 with PCC led to the
corresponding α-formyl cyclic ketone 3, which set to the stage
Supplementary Material
Supplementary data associated with this article can be found in the online