Supramolecular Nanobaskets
5481 – 5492
39.1 mmol) were stirred for 1 h in dichloromethane (10 mL). The resulting
dark red solution was evaporated to dryness to furnish C2. After chroma-
tography (silica gel; dichoromethane/methanol=10:1) 87.0 mg (80%) of
a dark red powder containing water were obtained. M.p. >3008C;
1H NMR (600 MHz, CD2Cl2): d=0.91 (t, J=7.2 Hz, 12H; hexyl), 1.33–
1.45 (m, 16H; hexyl), 1.40 (s, 18H; tert-butyl), 1.48–1.54 (m, 8H; hexyl),
1.73 (s, 12H; benzyl), 1.75 (s, 12H; benzyl), 1.81 (s, 12H; benzyl), 1.82–
1.86 (m, 8H; hexyl), 3.11 (t, J=7.5 Hz, 8H; hexyl), 3.34 (s, 6H; me-
thoxy), 4.27 (s, 6H; methoxy), 5.83 (s, 4H; phenyl), 6.07 (s, 4H; phenyl),
7.63 (s, 4H; phenyl), 7.77 (d, J=8.1 Hz, 8H; phenyl), 7.85 (d, J=8.1 Hz,
8H; phenyl), 7.86 (d, J=8.0 Hz, 2H; phenanthroline), 7.87 (d, J=8.0 Hz,
2H; phenanthroline), 8.25 (s, 4H; phenanthroline), 8.40 (s, 4H; phenan-
throline), 8.53 (s, 4H; phenanthroline), 8.72 (d, J=8.0 Hz, 2H; phenan-
throline), 8.73 ppm (d, J=8.0 Hz, 2H; phenanthroline); 13C NMR
(CD2Cl2, 151 MHz): d=14.2, 20.2, 20.6, 20.8, 23.0, 29.6, 31.1, 31.3, 32.0,
33.0, 34.7, 55.0, 62.0, 85.3, 89.1, 93.1, 104.8, 112.0, 116.9, 122.0, 125.5,
125.6, 126.9, 127.1, 127.4, 128.4, 128.5, 128.6, 131.6, 132.3, 132.5, 133.1,
134.9, 136.7, 137.5, 137.9, 138.3, 141.2, 141.9, 144.4, 147.4, 148.5, 159.2,
159.3, 159.5, 160.6 ppm; IR (KBr):=2954, 2923, 2855, 2195, 1654, 1570,
1508, 1475, 1458, 1420, 1320, 1245, 1156, 1104, 1011, 839, 558 cmꢁ1; ESI
MS: m/z (%): 1253.2 (100) [Mꢁ2PF6]+; elemental analysis calcd (%) for
C170H160N8O4Cu2P2F12·3H2O (2796.21): C 71.64, H 5.87, N 3.93; found: C
71.75, H 5.93, N 4.29.
(m, 8H; phenyl), 7.93 (d, J=8.2 Hz, 2H; phenanthroline), 8.21 (d, J=
9.3 Hz, 2H; phenanthroline; HX6’), 8.24 (d, J=9.3 Hz, 2H; phenanthro-
line; HX6’), 8.40 (s, 4H; phenanthroline), 8.52 (s, 4H; phenanthroline),
8.70 (d, J=8.0 Hz, 2H; phenanthroline), 8.74 ppm (d, J=8.2 Hz, 2H;
phenanthroline); 13C NMR (CD2Cl2, 151 MHz): d=14.0, 20.0, 20.3, 20.4,
23.0, 29.1, 29.3, 30.9, 31.7, 32.7, 34.5, 61.7, 66.7, 68.0, 68.1, 69.3, 70.5, 70.9,
85.0, 88.9, 92.8, 104.6, 111.8, 115.5, 116.6, 121.7, 125.2, 125.4, 126.8, 126.9,
127.3, 128.0, 128.1, 128.3, 131.4, 132.0, 132.2, 132.6, 132.9, 134.7, 136.2,
136.4, 137.5, 137.6, 138.1, 140.9, 141.6, 144.1, 147.2, 148.2, 153.2, 153.3,
157.8, 158.7, 160.3 ppm.
Isomer C4y: 1H NMR (600 MHz, CD2Cl2): d=0.88–0.93 (m, 12H;
hexyl), 1.32–1.45 (m, 16H; hexyl), 1.38 (s, 18H; tert-butyl), 1.47–1.56 (m,
8H; hexyl), 1.70 (s, 12H; benzyl), 1.74 (s, 6H; benzyl), 1.80–1.86 (m, 8H;
hexyl), 1.99 (s, 12H; benzyl), 3.02–3.20 (m, 8H; hexyl), 3.61–3.62 (m,
4H; ethoxy), 3.63–3.65 (m, 4H; ethoxy), 3.70–3.72 (m, 4H; ethoxy),
3.78–3.80 (m, 4H; ethoxy), 3.89–3.90 (m, 4H; ethoxy), 3.96–3.98 (m, 4H;
ethoxy), 4.14 (s, 6H; methoxy; HYc), 5.49 (s, 4H; phenyl; HYb), 6.33 (s,
4H; phenyl; HYa), 7.07 (s, 4H; phenyl; HYc), 7.62 (s, 4H; phenyl), 7.74–
7.76 (m, 8H; phenyl), 7.77 (d, J=8.1 Hz, 2H; phenanthroline), 7.87–7.88
(m, 8H; phenyl), 7.97 (d, J=8.2 Hz, 2H; phenanthroline), 8.21 (d, J=
9.3 Hz, 2H; phenanthroline; HY6’), 8.24 (d, J=9.3 Hz, 2H; phenanthro-
line; HY5’), 8.40 (s, 4H; phenanthroline), 8.55 (s, 4H; phenanthroline),
8.67 (d, J=8.1 Hz, 2H; phenanthroline), 8.76 ppm (d, J=8.2 Hz, 2H;
phenanthroline); 13C NMR (CD2Cl2, 151 MHz): d=13.9, 20.1, 20.3, 20.4,
23.0, 29.1, 29.3, 30.9, 31.7, 32.7, 34.5, 61.6, 66.6, 69.8, 70.5, 70.8, 71.2, 71.3,
85.0, 88.9, 92.8, 104.6, 111.5, 115.7, 116.6, 121.8, 125.3, 125.4, 126.8, 127.6,
128.0, 128.1, 128.3, 131.3, 132.0, 132.2, 132.6, 132.9, 134.7, 136.2, 136.4,
137.5, 137.8, 138.1, 140.9, 141.6, 144.1, 147.2, 148.2, 153.2, 153.3, 157.8,
159.3, 160.4 ppm.
Synthesis of complex C3: Compound 2 (49.0 mg, 40.9 mmol), 5a (74.4 mg,
81.8 mmol) and [Cu(CH3CN)4]PF6 (30.5 mg (81.8 mmol) were stirred in
dry dichloromethane (10 mL) for 2 h. The resulting dark red solution was
evaporated to afford crude C3. After chromatography (silica gel; di-
choromethane/methanol=10:1) 130 mg (85%) of a dark red powder con-
taining dichloromethane were obtained. M.p. >122–1248C; 1H NMR
(600 MHz, CD2Cl2): d=0.86–0.90 (m, 12H; hexyl), 1.15–1.20 (m, 84H;
triisopropyl), 1.31–1.40 (m, 16H; hexyl), 1.43–1.49 (m, 8H; hexyl), 1.70–
1.72 (m, 6H; benzyl), 1.72–1.74 (m, 12H; benzyl), 1.77–1.82 (m, 8H;
hexyl), 1.79 (s, 12H; benzyl), 3.07 (t, J=7.6 Hz, 8H; hexyl), 3.55–3.56 (m,
4H; ethoxy), 3.57 (s, 4H; ethoxy), 3.58 (s, 4H; ethoxy), 3.60–3.68 (m,
4H; ethoxy), 3.69–3.81 (m, 4H; ethoxy), 3.95–4.05 (m, 4H; ethoxy), 5.84
(s, 4H; phenyl), 6.02–6.06 (m, 4H; phenyl), 6.75–6.80 (m, 4H; phenyl),
7.59–7.63 (m, 8H; phenyl), 7.71–7.74 (m, 8H; phenyl), 7.85–7.94 (m, 4H;
phenanthroline), 8.24 (s, 4H; phenanthroline), 8.38–8.40 (m, 4H; phenan-
throline), 8.47–8.52 (m, 4H; phenanthroline), 8.70–8.74 ppm (m, 4H;
phenanthroline); 13C NMR (151 MHz): d=11.7, 14.2, 18.8, 20.3, 20.6,
20.8, 23.0, 29.6, 31.1, 32.0, 33.0, 67.2, 68.3, 69.8, 70.1, 71.0, 71.1, 85.2, 94.9,
104.7, 106.6, 112.6, 115.7, 122.0, 125.6, 127.0, 127.2, 127.4, 128.3, 128.4,
128.6, 129.1, 132.2, 132.7, 133.3, 134.8, 136.7, 137.4, 137.9, 138.2, 141.4,
141.9, 144.4, 148.4, 153.4, 158.3, 159.2, 159.4 ppm; IR (KBr):=2924, 2862,
2198, 2152, 1618, 1578, 1542, 1508, 1458, 1376, 1232, 1164, 1124, 1071,
839, 747, 557 cmꢁ1; ESI MS: m/z (%): 1560.3 (100) [Mꢁ2PF6]+; elemen-
tal analysis calcd (%) for C200H238N8O8Si4Cu2P2F12·4CH2Cl2 (3751.23): C
65.40, H 6.62, N 2.99; found: C 65.11, H 6.44, N 2.90.
1
Isomer C4z: H NMR (400 MHz, CD2Cl2): d=0.79–0.83 (m, 12H; hexyl),
1.32–1.45 (m, 16H; hexyl), 1.38 (s, 18H; tert-butyl), 1.47–1.56 (m, 8H;
hexyl), 1.70 (s, 12H; benzyl), 1.74 (s, 6H; benzyl), 1.80–1.86 (m, 8H;
hexyl), 1.99 (s, 12H; benzyl), 2.91–3.01 (m, 8H; hexyl), 3.61–3.62 (m,
4H; ethoxy), 3.63–3.65 (m, 4H; ethoxy), 3.70–3.72 (m, 4H; ethoxy),
3.78–3.80 (m, 4H; ethoxy), 3.89–3.90 (m, 4H; ethoxy), 3.96–3.98 (m, 4H;
ethoxy), 4.24 (s, 6H; methoxy; Hza), 5.85 (s, 4H; phenyl; HZb), 6.06 (s,
4H; phenyl), 6.75 (s, 4H; phenyl; HZc), 7.61 (s, 4H; phenyl), 7.75–7.77
(m, 8H; phenyl), 7.77 (d, J=8.1 Hz, 2H; phenanthroline), 7.87–7.88 (m,
8H; phenyl), 7.97 (d, J=8.2 Hz, 2H; phenanthroline), 8.21 (d, J=9.3 Hz,
2H; phenanthroline; HZ5’), 8.23 (s, 2H; phenanthroline; HZ6’), 8.38 (s,
4H; phenanthroline), 8.53 (s, 4H; phenanthroline), 8.67 (d, J=8.1 Hz,
2H; phenanthroline), 8.76 ppm (d, J=8.2 Hz, 2H; phenanthroline).
Acknowledgement
We are indebted to the financial support from the DFG, the Fonds der
Deutschen Chemie and the European Union (MAC-MES).
Preparation of heteroleptic basket assembly C4: Tetrakis(acetonitrile)-
copper(i) hexafluorophosphate (12.0 mg, 32.2 mmol) in dichloromethane
(10 mL) was added to a mixture of 1 (24.2 mg, 16.1 mmol) and 2 (18.7 mg,
16.1 mmol). The resulting dark red solution was heated (~358C) for sever-
al seconds and then the solvent was evaporated to afford the basket as-
sembly (C4xyz) quantitatively as dark red powder (containing water). M.p.
2258C; IR (KBr):=2924, 2855, 2195, 1605, 1509, 1462, 1260, 1101, 1026,
839, 555 cmꢁ1; ESI MS (C4xyz): m/z (%): 1408.4 (100) [Mꢁ2PF6]+; ele-
mental analysis calcd (%) for C186H182N8O10Cu2P2F12·2H2O (3142.59): C
71.09, H 5.97, N 3.57; found: C 71.02, H 5.89, N 3.46. C4x:C4y:C4z were
formed in a 59:24:17 ratio. C4x,y could be separated from C4z by chro-
matography (silica gel, dichloromethane/methanol=100:1). Initial frac-
tions contained C4x,y as the sole products while later fractions furnished
enriched C4z (80%).
Isomer C4x: 1H NMR (600 MHz, CD2Cl2): d=0.88–0.93 (m, 12H;
hexyl), 1.32–1.45 (m, 16H; hexyl), 1.39 (s, 18H; tert-butyl), 1.47–1.56 (m,
8H; hexyl), 1.58 (s, 6H; benzyl), 1.68 (s, 12H; benzyl), 1.80–1.86 (m, 8H;
hexyl), 1.87 (s, 12H; benzyl), 3.02–3.20 (m, 8H; hexyl), 3.50–3.52 (m,
4H; ethoxy), 3.53–3.56 (m, 4H; ethoxy), 3.57–3.59 (m, 4H; ethoxy),
3.69–3.70 (m, 4H; ethoxy), 4.01–4.02 (m, 4H; ethoxy), 4.16–4.20 (m, 4H;
ethoxy), 4.21 (s, 6H; methoxy; HXd), 5.64 (s, 4H; phenyl; HXb), 6.19 (s,
4H; phenyl; HXa), 6.87 (s, 4H; phenyl; HXc), 7.63 (s, 4H; phenyl), 7.76–
7.77 (m, 8H; phenyl), 7.83 (d, J=8.0 Hz, 2H; phenanthroline), 7.84–7.86
[1] a) B. Dietrich, P. Viout, J.-M. Lehn, Macrocyclic Chemistry, VCH,
Weinheim 1993; b) Macrocycle Synthesis, (Ed.: D. Parker), Oxford
University Press, Oxford 1996.
[2] S. Hꢁger, K. Bonrad, A. Mourran, U. Beginn, M. Mꢁller, J. Am.
Chem. Soc. 2001, 123, 5651–5659.
[3] E. Mena-Osteritz, P. Bäuerle, Adv. Mater. 2001, 13, 243–246.
[4] P. Samori, F. Jäckel, O. Unsal, A. Godt, J. P. Rabe, ChemPhysChem
2001, 2, 461–464.
[5] a) A. S. Shetty, P. R. Fischer, K. F. Stork, P. W. Bohn, J. S. Moore, J.
Am. Chem. Soc. 1996, 118, 9409–9414; b) O. Y. Mindyuk, M. R.
Stetzer, D. Gidalevitz, P. A. Heiney, Langmuir 1999, 15, 6897–6900;
c) Krꢁmer, I. Rios-Carreras, G. Fuhrmann, C. Musch, M. Wunder-
lin, T. Debaerdemaeker, E. Mena-Osteritz, P. Bäuerle, Angew.
Chem. 2000, 112, 3623–3628; Angew. Chem. Int. Ed. 2000, 39, 3481–
3486.
[6] a) S. Hꢁger, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 2685–
2698; b) F. Diederich, Nature 1994, 369, 199–207; c) J. M. Tour,
Chem. Rev. 1996, 96, 537–553. d) J. S. Moore, Acc. Chem. Res. 1997,
30, 402–413; e) M. M. Haley, Synlett 1998, 557–565; f) M. M. Haley,
J. J. Pak, S. C. Brand, Top. Curr. Chem. 1999, 201, 81–130; g) F. Die-
Chem. Eur. J. 2004, 10, 5481 – 5492
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5491