5.
(a) Sangshetti, J. N.; Ahmad, A. A. S.; Khan, F. A. K.; Zaheer, Z.
Mini-Rev. Org. Chem. 2015, 12, 345–354. (b) Lévai, A.
Heterocycles, 2008, 75, 2155–2185.
Fekner, T.; Gallucci, J.; Chan, M. K. Org. Lett. 2003, 5, 4795–
4798.
(a) Das, J.; Borah, B. J.; Das, S. K.; Org. Biomol. Chem. 2020, 18,
220–224. (b) Das, A. J.; Borgohain, H.; Sarma, B.; Das, S. K.;
Org. Biomol. Chem. 2020, 18, 441–449. (c) Borgohain, H.; Das, S.
K. Tetrahedron Lett. 2019, 60, 2070–2073. (d) Borgohain, H.;
Devi, R.; Dheer, D.; Borah, B. J.; Shankar, R.; Das, S. K. Euro. J.
Org. Chem. 2017, 45, 6671–6679.
This work is a part of PhD thesis: Devi, R. Stereoselective
Synthesis of Functionalized Chromans and Related Heterocycles
via Intramolecular Cyclization Reactions of Epoxides, Aziridines,
and Vicinal Diols, Tepur University 2018.
hitherto unreported chroman-linked benzimidazole-fused 1,4-
benzoxazepine. The developed chemistry should be extendable
for synthesizing other hybrid compounds.
6.
7.
Acknowledgments
We acknowledge the financial support (Grant No.:
02(0306)/17/EMR-II) provided by the Council of Scientific and
Industrial Research (CSIR), New Delhi. RD is thankful also to
CSIR for a providing Senior Research Fellowship.
8.
9.
Supplementary Material
(a) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry,
Part B: Reactions and Synthesis, 5th ed.; Plenum:ꢀ New York,
2007; p 1105. (b) Kayser, M. M.; Morand, P. Can. J. Chem. 1980,
58, 302–306. (c) Saddique, F. A.; Zahoor, A. F.; Faiz, S.; Naqvi,
S. A. R.; Usman, M.; Ahmad, M. Synth. Commun. 2016, 46, 831–
868.
Experimental procedures, characterization data for all compounds
1
and copies of H and 13C NMR spectra for all new compounds
are available.
Base-mediated synthesis of benzimidazole-
fused 1,4-benzoxazepines via sequential
intermolecular epoxide ring-opening and
intramolecular SNAr reactions
Leave this area blank for abstract info.
Runjun Devi, Subhamoy Mukhopadhyay, Arup Jyoti Das, and Sajal Kumar Das
O
, K2CO3 (1.5 equiv)
1.
R
F
N
N
DMF, 80 oC, 12 h
N
O
N
H
2. NaH (1.15 equiv), DMF
0 oC - rt, 2 h
R
O
H
H
OH
11 steps
O
N
N
10. Brunelli, N. A.; Long, W.; Venkatasubbaiah, K.; Jones, C. W.
Top. Catal. 2012, 55, 432–438.
11. Mohseni, S.; Bakavoli, M.; Morsali, A. Prog. React. Kinet. Mech.
2014, 39, 89–102.
12. Huang, K.; Wang, H.; Stepanenko, V.; Jesus, M. D.; Torruellas,
C.; Correa, W.; Ortiz-Marciales, M. J. Org. Chem. 2011, 76,
1883–1886.
13. Thapa, P.; Palacios, P. M.; Tran, T.; Pierce, B. S.; Foss, Jr. F. W.
J. Org. Chem. 2020, 85, 1991−2009.
14. Dinda, S. K.; Das, S. K.; Panda, G. Synthesis 2009, 1886–1896.
15. (a) Sedaghat-Herati, M. R.; McManus, S. P.; Harris, J. M. J. Org.
Chem. 1988, 53, 2539–2543. (b) Gallardo, I.; Guirado, G.;
Marquet, J. J. Org. Chem. 2002, 67, 2548–2555. (c) Egris, R.;
Villacampa, M.; Menéndez, J. C. Chem. - Eur. J. 2009, 15,
10930–10939. (d) Hattori, T.; Takeda, A.; Yamabe, O.; Miyano,
S. Tetrahedron 2002, 58, 233–238.
16. (a) Wang, X.; Li, C.; Wang, X.; Wang, Q.; Dong, X.-Q.; Duan,
A.; Zhao, W. Org. Lett. 2018, 20, 4267–4272. (b) Shigeno, M.;
Hayashi, K.; Nozawa-Kumada, K.; Kondo, Y.; Chem. - Eur. J.
2019, 25, 6077–6081. (c) Kaga, A.; Hayashi, H.; Hakamata, H.;
Oi, M.;Uchiyama, M.; Takita, R.; Chiba, S. Angew. Chem., Int.
Ed. 2017, 56, 11807–11811. (d) Romero, N. A.; Margrey, K. A.;
Tay, N. E.; Nicewicz, D. A. Science 2015, 349, 1326–1330.
References and notes
1.
(a) Shaveta, Mishra, S.; Singh, P. Eur. J. Med. Chem. 2016, 124,
500–536. (b) Marco-Contelles, J.; Soriano, E. Curr. Top. Med.
Chem. 2011, 11, 2714–2715. (c) Viegas-Junior, C.; Danuello, A.;
da Silva Bolzani, V.; Barreiro, E. J.; Fraga, C. A. Curr. Med.
Chem. 2007, 14, 1829–1852. (d) Biot, C.; Chibale, K. Infect.
Disord. Drug Targets 2006, 6, 173–204; (e) Tietze, L. F.; Bell, H.
P.; Chandrasekhar, S. Angew Chem. Int. Ed. Engl. 2003, 42,
3996–4028.
2.
For selected recent examples, see: (a) Ma, X.; Li, H.; Xin, H.; Du,
W.; Anderson, E. A.; Dong, X.; Jiang, Y. Org. Lett. 2020, 22,
5320–5325. (b) Ham, J. S.; Park, B.; Son, M.; Roque, J.; Jurczyk,
J.; Yeung, C. S.; Baik, M.-H.; Sarpong. R. J. Am. Chem. Soc.
2020, 142, 13041–13050. (c) Domínguez-Villa, F. X.; Ávila-
Zárraga, G.; Armenta-Salinas, C. Tetrahedron Lett. 2020, 61,
151751. (d) Kim, D. Y.; Dao, P. D. Q.; Cho, C. S. ACS Omega,
2018, 3, 17456–17465. (e) Cheng, C.; Zuo, X.; Tu, D.; Wan,B.;
Zhang, Y. Org. Lett. 2020, 22, 4985–4989.
3.
4.
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem.
2014, 57, 5845–5859.
For selected examples, see: (a) Zhao, G.; Chen, C.; Yue, Y.; Yu,
Y.; Peng, J. J. Org. Chem. 2015, 80, 2827–2834. (b) Xue, D.;
Long,Y. Q. J. Org. Chem. 2014, 79, 4727–4734. (c) Sun, X.; Lv,
X. H.; Ye, L. M.; Hu, Y.; Chen, Y. Y.; Zhang, X. J.; Yan, M. Org.
Biomol. Chem. 2015, 13, 7381–7384. (d) Hsiao, Y. S.; Narhe, B.
D.; Chang, Y. S.; Sun, C. M. ACS Comb. Sci. 2013, 15, 551–555.
Graphical Abstract