3696
T. Kato et al. / Tetrahedron: Asymmetry 15 (2004) 3693–3697
cyclization. The lack of catalytic activity when 1 and 1812
were applied in the above reaction may be attributable to
the strong Lewis basicity of the metal-coordinating oxazo-
lines in comparison with that for isoxazolines.2e
44, 5201; (e) Shinohara, T.; Wakita, K.; Arai, M. A.;
Arai, T.; Sasai, H. Heterocycles 2003, 59, 587; (f)
Takizawa, S.; Honda, Y.; Arai, M. A.; Kato, T.; Sasai,
H. Heterocycles 2003, 60, 2551; (g) Wakita, K.; Arai, M.
A.; Kato, T.; Shinohara, T.; Sasai, H. Heterocycles 2004,
62, 831.
Although the Pd(II)–1 complex did not promote the tan-
dem reaction from 13 to 14, the Cu(II)–1 complex cata-
lyzed both the carbonyl-ene reaction13 of a-methyl
styrene with ethyl glyoxylate, and the Henry reaction14
of nitromethane with p-nitrobenzaldehyde to afford the
corresponding products with moderate enantioselectiv-
ity (Scheme 7). These results indicate that spiro
bis(oxazoline) functions effectively as an asymmetric lig-
and. This ligand-acceleration ability is a promising fea-
ture that has proven to be useful in studies of other
catalytic asymmetric reactions.
3. Review of bis(oxazoline) ligands for asymmetric catalysis:
(a) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339; (b) Ghosh, A.
K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry
1998, 9, 1; (c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res.
2000, 33, 325; (d) McManus, H. A.; Guiry, P. J. Chem.
Rev. 2004, 104, 4151.
4. Several chiral ligands with spiro skeletons have been
reported (a) Chan, A. S. C.; Hu, W.-H.; Pai, C.-C.; Lau,
C.-P.; Jiang, Y.-Z.; Mi, A.-Q.; Yan, M.; Sun, J.; Lou,
R.-L.; Deng, J.-G. J. Am. Chem. Soc. 1997, 119, 9570; (b)
Tamura, N.; Takahashi, T.; Nakajima, M.; Hashimoto S.
Abstracts, 26th Symposium on Progress in Organic
Reactions and Syntheses, Osaka, Japan, November 20–
21, 2000; p 58; (c) Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu,
S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. J. Am. Chem.
Soc. 2003, 125, 4404; (d) Kandula, S. V.; Puranik, V. G.;
Kumar, P. Tetrahedron Lett. 2003, 44, 5015; (e) Lait, S.
M.; Parvez, M.; Keay, B. A. Tetrahedron: Asymmetry
2004, 15, 155.
(-)-1 (12 mol %)
O
OH
Cu(OTf) (10 mol %)
2
H
OEt
+
OEt
Ph
o
Ph
CH Cl , 0 C, 30h
2
2
O
O
62%, 84% ee
(-)-1 (5.5 mol %)
5. (a) Goodman, L.; Winstein, S. J. Am. Chem. Soc. 1957, 79,
4788; (b) Baldwin, J. E.; Kelly, D. R.; Ziegler, C. B. J.
Chem. Soc., Chem. Commun. 1984, 133.
6. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413;
(b) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953; (c) Bassindale, M. J.; Hamley, P.;
Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999, 40,
3247; (d) Martin, R.; Alcon, M.; Pericas, M. A.; Riera, A.
J. Org. Chem. 2002, 67, 6896.
OH
Cu(OAc) (5 mol %)
2
NO
2
p-NO -C H CHO + MeNO
2
2
6
4
p-NO -C H
6 4
2
EtOH, rt, 24h
98%, 65% ee
Scheme 7. Asymmetric reactions promoted by Cu(II)-spiro bis(oxaz-
oline) ligand 1.
3. Conclusion
7. (a) Cogan, D. A.; Liu, G.; Kim, K.; Backes, B. J.; Ellman,
J. A. J. Am. Chem. Soc. 1998, 120, 8011; (b) Cogan, D. A.;
Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883; (c) Tang,
T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. 2001,
66, 8772; (d) Plobeck, N.; Powell, D. Tetrahedron:
Asymmetry 2002, 13, 303; (e) Owens, T. D.; Souers, A.
J.; Ellman, J. A. J. Org. Chem. 2003, 68, 3.
In conclusion, novel spiro bis(oxazoline) 1 was synthe-
sized as a new class of bidentate ligand, and the coordi-
native ability of 1 for metal salts was confirmed by
NMR and X-ray crystallographic analysis.
8. Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini,
G.; Dolling, U.-H.; Grabowski, E. J. J. Tetrahedron Lett.
1995, 36, 5461.
Acknowledgements
9. The direct conversion of 5 to 4 via the corresponding
dialdehyde resulted in a low yield of 4.
10. Crystal data for PdCl2–( )-1 complex: monoclinic, space
This work was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Culture,
Sports, Science, and Technology, Japan and the Uehara
Memorial Foundation. We thank the technical staff of
the Materials Analysis Center of the Institute of Scien-
tific and Industrial Research (ISIR), Osaka University,
for technical assistance.
˚
˚
˚
group C2/c, a = 12.05(1) A, b = 14.87(1) A, c = 14.54(1) A,
˚
3
b = 112.43(6)ꢁ, V = 2408(3) A , Z = 4 , R = 0.037, Rw =
0.021.
11. HPLC conditions: Daicel Chiralpak AD (/ 2cm · 25cm),
i-PrOH/hexane = 1:29, 5.0mL/min, 31min [(M,R,R,R,
26
R,R,R)-1, ½aꢂD = ꢁ112.7 (c 0.69, CHCl3)], 41min
26
[(P,S,S,S,S,S,S)-1, ½aꢂD = +113.4( c 0.67, CHCl3)]. The
absolute configuration of 1 was determined by exciton CD
Cotton effects in CHCl3.
References
12. (a) Rush, S.; Reinmuth, A.; Risse, W. Macromolecules
1997, 30, 7375; (b) Moye-Sherman, D.; Welch, M. B.;
Reibenspies, J.; Burgess, K. Chem. Commun. 1998, 2377;
(c) Stavenger, R. A.; Schreiber, S. L. Angew. Chem., Int.
Ed. 2001, 40, 3417.
13. Procedure for carbonyl-ene reaction: A mixture of ligand
(ꢁ)-1 (0.012mmol) and Cu(OTf)2 (0.006mmol) in CH2Cl2
(0.8mL) was stirred at 0ꢁC for 2h. To this solution was
added a-methyl styrene (0.20mmol) and ethyl glyoxylate
(1.2mmol). After stirring for a further 30h at 0ꢁC, the
reaction was quenched by the addition of water, and
extracted with CH2Cl2. The organic layer was dried over
MgSO4 and concentrated. The residue was purified by
1. (a) Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Comprehensive Asymmetric Synthesis I–III; Springer:
Berlin, 1999; (b) Ojima, I., Ed. Catalytic Asymmetric
Synthesis, 2nd ed.; Wiley-VCH: New York, 2000; (c)
Kobayashi, Y., Ed. Latest Frontiers of Organic Synthesis;
Research Signpost, 2002.
2. (a) Arai, M. A.; Arai, T.; Sasai, H. Org. Lett. 1999, 1,
1795; (b) Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. J.
Am. Chem. Soc. 2001, 123, 2907; (c) Shinohara, T.; Arai,
M. A.; Wakita, K.; Arai, T.; Sasai, H. Tetrahedron Lett.
2003, 44, 711; (d) Muthiah, C.; Arai, M. A.; Shinohara, T.;
Arai, T.; Takizawa, S.; Sasai, H. Tetrahedron Lett. 2003,