4888 J. Am. Chem. Soc., Vol. 119, No. 21, 1997
Nakamura et al.
nated alkyl or aryl groups, which was identified in the crystals
A number of cuprate reagents of monomeric stoichiometry,
R2CuLi‚LiX (or R2Cu(X)Li2), are currently used in organic
synthesis. It is important to note that, the synthetic copper
reagents being prepared by the reaction of RLi with Cu(I)
halides, they are almost always the reagents of R2CuLi‚LiX
stoichiometry (X ) I,11,22 Br,23,24 and Cl25). The kinetic studies
on conjugate addition15 and the alkylation reactions9b,13,14
indicated that the dimeric R2CuLi remains to be a kinetically
active species even in the presence of LiI, though the reaction
rates were slightly affected by LiI.17a The small LiI effects have
been attributed to the high equilibrium concentration of a pair
of cyclic dimers, (Me2CuLi)2 + (LiI)2 in an ether solution of
the “Me2CuLi‚LiI” reagent.11 Very recent molecular weight
determination indicated that Me2CuLi‚LiI in THF exists in the
monomeric form.22
As summarized above, a dimeric cluster exists in solution
and takes part in the C-C bond forming reaction (e.g., conjugate
addition and alkylation reaction). However, there is little
understanding of the function of the cluster structure in cuprate
chemistry. In light of the importance of cuprate chemistry and
the paucity of information at the molecular level of understand-
ing of clusters, we have carried out quantum mechanical studies
on the dynamic behavior of cluster and noncluster organocu-
prates by ab initio molecular orbital and density functional (DF)
methods. We have studied the reactions of three prototypical
clusters, Me2CuLi, Me2CuLi‚LiCl, and (Me2CuLi)2 as well as
the simplest noncluster compounds, MeCu and Me2Cu-, in order
to address to the fundamental question: what is the role of
clusters in organocuprate chemistry.
In this and the accompanying articles,26 we will describe the
first systematic theoretical studies on the reaction pathways of
the polymetallic lithium organocuprate clusters reacting with
C-C multiple bonds. This article describes (1) 1,2-addition
of cuprates to acetylene along with a discussion on cuprate
models and computational methods and (2) the conjugate
addition of bis-, tri-, and tetrametallic cuprate clusters to acrolein.
While different in the details of the reaction course, the two
reactions were found to share in common important mechanistic
features, a “trap-and-bite” reaction pathway realized by coopera-
tion of the lithium and copper atoms. Though our studies were
mainly focused on the process involving the crucial C-C bond
forming process, and the reaction pathway prior to the C-C
bond formation was also made.
of several cuprates (e.g., R ) Ph, Me3SiCH2).10 NMR studies
1
7
on H, 13C, and Li nuclei carried out for reagents of the R2-
CuLi stoichiometry also supported the presence of the dimeric
aggregate in an ethereal solution.11,12
In the kinetic studies of the conjugate addition and SN2
alkylation of alkyl and aryl halides,9b,13,14 the reaction rates were
found to be first order to both the substrate and the dimer (R2-
CuLi)2. Thus, the dimer R2CuLi has been suggested to be a
kinetically reactive species. In the conjugate addition reaction,
a kinetically observable cuprate/enone complex forms first,
exists in equilibrium with the dimer and the substrate, and then
affords the final product.15 Recent NMR studies successfully
detected what are likely to be this kinetically observable
complexes16,17 and revealed that they are π-complexes between
a cuprate and an enone substrate bound together by donation/
backdonation interaction. The NMR spin coupling studies
showed that this π-complex assumes characters which are
consistent with the long discussed Cu(III) intermediate.18 The
recent isolation and elucidation of the crystal structures of stable
Cu(III) organometallics19,20 (e.g., [(CF3)4Cu]-) gave a strong
support to the possible intervention of a Cu(III) intermediates
in cuprate addition.21
(9) (a) van Koten, G.; Noltes, J. G. J. Chem. Soc., Chem. Commun. 1972,
940-941. (b) Pearson, R. G.; Gregory, C. D. J. Am. Chem. Soc. 1976, 98,
4098-4104.
(10) (a) van Koten, G.; Jastrzebski, J. T. B. H.; Muller, F.; Stam, C. H.
J. Am. Chem. Soc. 1985, 107, 697-698. (b) Lorenzen, N. P.; Weiss, E.
Angew. Chem., Int. Ed. Engl. 1990, 29, 300-302. (c) Olmstead, M. M.;
Power, P. P. Organometallics 1990, 9, 1720-1722. (d) Olmstead, M. M.;
Power, P. P. J. Am. Chem. Soc. 1990, 112, 8008-8014.
(11) Bertz, S. H.; Vellekoop, A. S.; Smith, R. A. J.; Snyder, J. P.
Organometallics 1995, 14, 1213-1220.
(12) (a) Ashby, E. C.; Watkins, J. J. J. Am. Chem. Soc. 1977, 99, 5312-
5317. (b) van Koten, G.; Noltes, J. G. J. Organomet. Chem. 1979, 174,
367-387. (c) Lipshutz, B. H.; Kozlowski, J. A.; Breneman, C. M. J. Am.
Chem. Soc. 1985, 107, 3197-3204.
(13) Johnson, C. R.; Dutra, G. A. J. Am. Chem. Soc. 1973, 95, 7783-
7787.
The description of the theoretical work will be preceded by
two sections dealing with the experimental background as well
as some new experimental results as to the role of the lithium
atom in the cuprate cluster. Comparison of theoretical methods
as applied to dynamic behavior of organocopper reagents is
(14) Spanenberg, W. J.; Snell, B. E.; Su, M.-C. Microchem. J. 1993, 47,
79-89.
(15) Krauss, S. R.; Smith, S. G. J. Am. Chem. Soc. 1981, 103, 141-
148.
(16) (a) Hallnemo, G.; Olsson, T.; Ullenius, C. J. Organomet. Chem.
1984, 265, C22-24. (b) Ullenius, C. Christenson, B. Pure Appl. Chem.
1988, 57-64.
(22) Gerold, A.; Jastrzebski, J. T. B. H.; Kronenburg, C. M. P.; Krause,
N.; van Koten, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 755-757.
(23) (a) House, H. O.; Chu, C.-Y.; Wilkins, J. M.; Umen, M. J. J. Org.
Chem. 1975, 10, 1460-1469. (b) Westmijze, H.; Kleijn, H.; Vermeer, P.
Tetrahedron Lett. 1977, 23, 2023-2026. (c) Bertz, S. H.; Fairchild, E. H.
Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John
&Wiley: Chichester: 1995; Vol. 2, pp 1312-1315.
(17) (a) Bertz, S. H.; Smith, R. A. J. J. Am. Chem. Soc. 1989, 111, 8276-
8277. (b) Vellekoop, A. S.; Smith, R. A. J. J. Am. Chem. Soc. 1994, 116,
2902-2913.
(18) (a) Krause, N.; Wagner, R.; Gerold, A. J. Am. Chem. Soc. 1994,
116, 381-382. (b) Nilsson, K.; Ullenius, C.; Krause, N. J. Am. Chem. Soc.
1996, 118, 4194-4195.
(19) Willert-Porada, M. A.; Burton, D. J.; Baenziger, N. C. J. Chem.
Soc., Chem. Commun. 1989, 1633-1634. Neumann, D.; Roy, T.; Tebbe,
K.-F.; Crump, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1482-1483.
Eujen, R.; Hoge, B.; Brauer, D. J. J. Organomet. Chem. 1996, 519, 7-20.
(20) Kaupp, M.; von Schnering, H. G. Angew. Chem., Int. Ed. Engl.
1995, 34, 986.
(21) Appropriateness of the use of Cu(III) formality has been questioned
(Snyder, J. P. Angew. Chem., Int. Ed. Engl. 1995, 34, 80-81) on the basis
of the calculated electron density, which is far less positive (∼+1) than
the formal charge of +3, and this challenge has been discussed from the
more standard inorganic viewpoint (cf. ref 20 and Snyder, J. P. Angew.
Chem., Int. Ed. Engl. 1995, 34, 986-987). As the Snyder proposal would
also pose problems in the use of the fundamental terminology such as
“reductive elimination”, we use here the conventional formal oxidation
nomenclature.
(24) Bertz, S. H.; Dabbagh, G. J. Org. Chem. 1984, 49, 1119-1122.
Bertz, S. H.; J. Am. Chem. Soc. 1990, 112, 4031-4032. Bertz, S. H.;
Fairchild, E. H. Encyclopedia of Reagents for Organic Synthesis; Paquette,
L. A., Ed.; John & Wiley: Chichester, 1995; Vol. 2, pp 1346-1349.
(25) Bertz, S. H.; Fairchild, E. H. Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A. Ed.; John & Wiley: Chichester, 1995; Vol. 2,
pp 1324-1326. See, also: (a) stoichiometric reagents: Bertz, S. H.; Gibson,
C. P.; Dabbagh, G. Tetrahedron Lett. 1987, 28, 4251-4254. Lipshutz, B.
H.; Stevens, K. L.; James, B.; Pavlovich, J. G.; Snyder, J. P. J. Am. Chem.
Soc. 1996, 118, 6796-6797. (b) Catalytic reagents: Tamura, M.; Kochi, J.
Synthesis 1971, 303-305. Giner, J.-L.; Margot, C.; Djerassi, C. J. J. Org.
Chem. 1989, 54, 2117-2125. Schlosser, M.; Bossert, H. Tetrahedron 1991,
47, 6287-6292.
(26) Nakamura, E.; Mori, S.; Morokuma, K. J. Am. Chem. Soc. 1997,
119, 4900-4910.