LETTER
Tricyclic Precursors of Cyclitols
1317
mL/min, n-heptane/i-PrOH (90:10); λdetection = 254 nm, tret,14
= 36.4 min, tret,ent-14 = 41.0 min].
(17) For the method, see: Dupau, P.; Epple, R.; Thomas, A. A.;
Fokin, V. V.; Sharpless, K. B. Adv. Synth. Catal. 2002, 344,
421.
(18) For the method, see: (a) With cumene hydroperoxide/
BnNMe3+ –OH: Devreese, A. A.; Demuynck, M.; De Clercq,
P. J.; Vandewalle, M. Tetrahedron 1983, 39, 3039. (b) With
t-BuOOH/BnNMe3+ –OH: Yang, N. C.; Finnegan, R. A.
J. Am. Chem. Soc. 1958, 80, 5845.
(19) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43,
2923.
(20) For the method, see: (a) Evans, D. A.; Chapman, K. T.
Tetrahedron Lett. 1986, 27, 5939. (b) Evans, D. A.;
Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988,
110, 3560.
References and Notes
(1) New Address: Istituto CNR di Scienza e Technologie
Molecolari, c/o Dipartimento di Chimica, Università degli
Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
(2) According to the definition by the IUPAC ‘cyclitols are
cycloalkanes containing one hydroxyl group on each of three
or more ring atoms’. See: IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature, Liébec, C.,
Ed.; Biochemical Nomenclature and Related Documents;
Portland Press Ltd: London, 1992, 2nd ed. 149–155.
(3) (a) For reviews, see: Hudlicky, T.; Cebulak, M. Cyclitols
and Their Derivatives: A Handbook of Physical, Spectral,
and Synthetic Data; Verlag Chemie: Weinheim, 1993.
(b) Gueltekin, M. S.; Celik, M.; Balci, M. Curr. Org. Chem.
2004, 8, 1159.
(4) (a) For reviews, see: Billington, D. C. The Inositol
Phosphates: Chemical Synthesis and Biological
Significance; Verlag Chemie: Weinheim, 1993. (b) Potter,
B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1996, 34,
1933; Angew. Chem. 1995, 107, 2085 . (c) Best, M. D.;
Zhang, H.; Prestwich, G. D. Nat. Prod. Rep. 2010, 27, 1403.
(5) For a parallel interest in the chemistry, synthesis, and
biological evaluation of aminocyclitols, cf.: (a) Lysek, R.;
Vogel, P. Tetrahedron 2006, 62, 2733. (b) Delgado, A. Eur.
J. Org. Chem. 2008, 3893.
(6) (a) For reviews, see: Billington, D. C. Chem. Soc. Rev. 1989,
18, 83. (b) Prestwich, G. D. Acc. Chem. Res. 1996, 10, 503.
(c) Sureshan, K. M.; Shashidhar, M. S.; Praveen, T.; Das, T.
Chem. Rev. 2003, 103, 4477.
(7) For reviews, see: (a) Duchek, J.; Adams, D. R.; Hudlicky, T.
Chem. Rev. 2011, 111, 4223. (b) Kilbas, B.; Balci, M.
Tetrahedron 2011, 67, 2355. (c) Balci, M. Pure Appl. Chem.
1997, 69, 97. (d) Balci, M.; Sütbeyaz, Y.; Seçen, H.
Tetrahedron 1990, 46, 3715.
(21) At a later point of our investigation we would learn that such
ketal hydrolyses would not be facile even after the 1,4-
dioxane was gone [see our vain attempt to perform the 1,3-
dioxane cleavage 42 → 45 in one step (Scheme 8)].
(22) For example, DDQ/H2O, (NH4)2Ce(NO3)6/H2O,
Me2S/MgBr2·OEt2, NaI/CeCl3, Na/NH3, H2/Pd(C) or
Et3SiH/BF3·OEt2: Wuts, P. G. M.; Greene, T. W.
Greene’s Protective Groups in Organic Synthesis; Wiley-
Interscience: Hoboken, 2007, 4th ed. 23–30,120–135.
(23) (a) For a method for E-selective Wittig olefinations [(3-
hydroxypropyl)triphenylphosphoniumchloride (ref. 23b),
n-BuLi (2.0 equiv), THF, –20 °C, 2 h; 4-methoxybenzalde-
hyde (1.2 equiv), –20 °C → r.t., 4 h; 72% of pure E-isomer
after recrystallization from cyclohexane], see: Maryanoff,
B.; Reitz, A.; Duhl-Emswiler, B. J. Am. Chem. Soc. 1985,
107, 217. (b) For the preparation [PPh3, 3-chloropropan-1-ol
(1.05 equiv), toluene, reflux, 5 d; 87%], see: Dolle, R. E.; Li,
C.-S.; Novelli, R.; Kruse, L. I.; Eggleston, D. J. Org. Chem.
1992, 57, 128.
(8) For example, see: Pang, L.-J.; Wang, D.; Zhou, J.; Zhang,
L.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 4252 and
references cited therein.
(9) For example, see: Aydin, G.; Savran, T.; Aktaş, F.; Baran,
A.; Balci, M. Org. Biomol. Chem. 2013, 11, 1511 and
references cited therein.
(24) (a) One-step preparation of monobenzoate 24 from
hydroquinone, benzoyl chloride (1.0 equiv), and NaOH (1.0
equiv) in H2O (0 °C, 1.5 h; 65%. Ref.24b 84%).
(b) Bredereck, H.; Heckh, H. Chem. Ber. 1958, 91, 1314.
(25) For the method, see: (a) Sharpless, K. B.; Amberg, W.;
Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.;
Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang,
X.-L. J. Org. Chem. 1992, 57, 2768. (b) Amberg, W.;
Bennani, Y. L.; Chadha, R. K.; Crispino, G. A.; Davies, W.
D.; Hartung, J.; Jeong, K.-S.; Ogino, Y.; Shibata, T.;
Sharpless, K. B. J. Org. Chem. 1993, 58, 844. (c) Corey, E.
J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995,
117, 10805.
(10) For example, see: Trost, B. M.; Dudash, J. Jr.; Hembre, E. J.
Chem. Eur. J. 2001, 7, 1619 and references cited therein.
(11) For example, see: Hudlicky, T.; Price, J. D.; Rulin, F.;
Tsunoda, T. J. Am. Chem. Soc. 1990, 112, 9439 and
references cited therein.
(12) For the synthesis of hydroxyketal 10 from L-malic acid, see:
(a) Reduction with BH3·SMe2/(B(OMe)3: Hanessian, S.;
Ugolini, A.; Dubé, D.; Glamyan, A. Can. J. Chem. 1984, 62,
2146. (b) Ketalization with 3-pentanone: Arth, H.-L.;
Sinerius, G.; Fessner, W.-D. Liebigs Ann. 1995, 2037.
(13) (a) For precedents, see: Etherification with DEAD:
Mitsunobu, O. Synthesis 1981, 1. (b) Mitsunobu
etherification of hydroquinone monobenzoate (24) with
DIAD: Amela-Cortés, M.; Heinrîch, B.; Donnio, B.; Evans,
K. E.; Smith, C. W.; Bruce, D. W. J. Mater. Chem. 2011, 21,
8427. (c) For Mitsunobu etherification of homoallylic
alcohols, see ref. 25c.
(14) (a) For the two-step preparation of monoacetate 11 from
hydroquinone, see: Tricotet, T. Dissertation; Universität
Freiburg: Germany, 2006, 220, 225. (b) For the one-step
preparation of 11 from hydroquinone, see: Dimroth, K.
Chem. Ber. 1939, 72, 2043.
(15) For the first respective application of this reagent, see:
Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem.
1987, 52, 3927.
(26) The enantiomeric excess (ee) of the diol 28 was determined
by chiral HPLC [Chiralcel OD-H; 0.8 mL/min, n-heptane/
EtOH (80:20); λdetection = 275 nm, tret,ent-28 = 13.3 min, tret,28
15.3 min].
=
(27) The oxidation of the diol 27 delivered, besides the six-
membered-ring ketal 30, the isomeric seven-membered-ring
ketal (8%; not depicted in Scheme 5), i.e. a PMP-substituted
analogue of the seven-membered-ring ketal 15. It was
separated by flash chromatography on silica gel (ref. 19).
(28) The inversion of configuration of a benzylic C–O bond in a
syn-configured arylethane-1,2-diol was described if the non-
benzylic oxygen was incorporated in a OMEM group:
Ramachandran, P. V.; Liu, H.; Reddy, M. V. R.; Brown, H.
C. Org. Lett. 2003, 5, 3755.
(29) For the oxidation of benzylic alcohols to aromatic ketones by
DDQ, see: Peng, K.; Chen, F.; She, X.; Yang, C.; Cui, Y.;
Pan, X. Tetrahedron Lett. 2005, 46, 1217.
(30) The enantiomeric excess (ee) of the hydroxy ketone 29 was
determined by chiral HPLC [Chiralpak AD-3; 1.0 mL/min,
(16) The enantiomeric excess (ee) of benzoquinone monoketal 14
was determined by chiral HPLC [Chiralcel OB-H; 1.0
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 1312–1318