Communication
ChemComm
R. Kuroki, Science, 2007, 316, 585; (b) S. Ogo, Coord. Chem. Rev.,
2017, 334, 43.
2 (a) X. Yang, L. C. Elrod, J. H. Reibenspies, M. B. Hall and M. Y.
Darensbourg, Chem. Sci., 2019, 10, 1368; (b) C. Wombwell, C. A.
Caputo and E. Reisner, Acc. Chem. Res., 2015, 48, 2858.
3 W. Lubitz, H. Ogata, O. Ru¨diger and E. Reijerse, Chem. Rev., 2014,
114, 4081.
4 (a) T. Matsumoto, B. Kure and S. Ogo, Chem. Lett., 2008, 37, 970;
(b) T. Matsumoto, T. Ando, Y. Mori, T. Yatabe, H. Nakai and S. Ogo,
J. Organomet. Chem., 2015, 796, 73.
5 T. Matsumoto, K. Kim and S. Ogo, Angew. Chem., Int. Ed., 2011,
50, 11202.
6 (a) N. Singh, M. Gordon, H. Metiu and E. McFarland, J. Appl.
Electrochem., 2016, 46, 497; (b) Y. Shimizu, S. Yamamoto and
M. Ono, Jpn. Kokai Tokkyo Koho, 2007, JP 200787827; (c) B. Chen,
G. Ma, Y. Zhu, J. Wang, W. Xiong and Y. Xia, J. Power Sources, 2016,
334, 112; (d) Y. Li and T. V. Nguyen, J. Power Sources, 2018, 382, 152;
(e) R. W. Reeve, P. A. Christensen, A. J. Dickinson, A. Hamnett and
K. Scott, Electrochim. Acta, 2000, 45, 4237; ( f ) M. Shen, C. Ruan,
Y. Chen, C. Jiang, K. Ai and L. Lu, ACS Appl. Mater. Interfaces, 2015,
7, 1207; (g) F. Wang, P. Zhang, S. You, J. Du, B. Jiang, X. Li, Z. Cai,
N. Ren and J. Zou, J. Colloid Interface Sci., 2020, 567, 65; (h) Y. Sun,
Y. Dai, Y. Duan, X. Xu, Y. Lv, L. Yang and J. Zou, Carbon, 2017,
119, 394; (i) D. Guo, S. Han, R. Ma, Y. Zhou, Q. Liu, J. Wang and
Y. Zhu, Microporous Mesoporous Mater., 2018, 270, 1; ( j) P. Chandran,
means of Tafel plots and impedance spectra (Fig. S20, S21 and
Table S9, ESI†). Exchange current densities of 0.0286 mA cmꢁ2
and 0.0161 mA cmꢁ2 were estimated for H2-oxidation and
O2-reduction with 1, respectively, by Tafel plots (Fig. S20 and
Table S9, ESI†), which are slightly lower than those of our previously
reported NiIIRuII complex.18 The exchange current densities
can drastically increase by dry distillation, as determined to be
13.9 mA cmꢁ2 for H2-oxidation and 10.5 mA cmꢁ2 for O2-reduction,
respectively, by using the DDC prepared at 600 1C (Fig. S20, ESI†).
This means that the DDC has higher charge-transfer ability on
the electrode. In impedance spectra, no Warburg impedances
were observed for the DDC, which indicates fast gas diffusion and
rapid dissociative adsorption, different from 1 (Fig. S21, ESI†).
Finally, we investigated the characteristics of a fuel cell using
the DDCs prepared at 600 1C as both the anode and the cathode
(Fig. S22b and Tables S4, S8, ESI†). The fuel cell generated an
OCV of 0.78 V and a maximum power density of 4.53 mW cmꢁ2
,
a 449-fold improvement in maximum power density over 1 as a
catalyst for both electrodes (Fig. S22, ESI†).
¨
A. Ghosh and S. Ramaprabhu, Sci. Rep., 2018, 8, 3591; (k) F. Moller,
In this paper, we have shown that a Rh analogue of our
previous [NiFe]H2ase models successfully functions in a similar
manner. Crucially, however, we have been able to transform it
by dry distillation into heterogeneous catalysts with maximum
power densities 5–28% that of platinum. While these new
catalysts fall short of the performance of platinum, they point the
way towards linking the stepwise development of new, hetero-
geneous, fuel cell catalysts with the development of homogeneous
organometallic catalysts.
This work was supported by JST CREST Grant Number
JPMJCR18R2, Japan, JSPS KAKENHI Grant Numbers JP26000008
(Specially Promoted Research), JP18H02091, and JP19K05503
and the World Premier International Research Center Initiative
(WPI), Japan.
S. Piontek, R. G. Miller and U.-P. Apfel, Chem. – Eur. J., 2018, 24,
1471.
7 S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka
and T. Ohhara, Science, 2013, 339, 682.
8 (a) R. M. Bullock and M. L. Helm, Acc. Chem. Res., 2015, 48, 2017;
(b) B. C. Manor and T. B. Rauchfuss, J. Am. Chem. Soc., 2013,
135, 11895.
9 H. Ogata, K. Nishikawa and W. Lubitz, Nature, 2015, 520, 571.
10 T. Kishima, T. Matsumoto, H. Nakai, S. Hayami, T. Ohta and S. Ogo,
Angew. Chem., Int. Ed., 2016, 55, 724.
11 P. Wulff, C. C. Day, F. Sargent and F. A. Armstrong, Proc. Natl. Acad.
Sci. U. S. A., 2014, 111, 6606.
12 J. Fritsch, O. Lenz and B. Friedrich, Nat. Rev. Microbiol., 2013, 11, 106.
¨
13 F. A. Westerhaus, R. V. Jagadeesh, G. Wienhofer, M.-M. Pohl, J. Radnik,
A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Br¨uckner and
M. Beller, Nat. Chem., 2013, 5, 537.
14 (a) J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben,
Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics
Inc., Minnesota, 1995; (b) J. Lu, Z. Tang, L. Luo, S. Yin, P. K. Shen
and P. Tsiakaras, Appl. Catal., B, 2019, 255, 117737.
15 J. Masud, T. V. Nguyen, N. Singh, E. McFarland, M. Ikenberry, K. Hohn,
C.-J. Pan and B.-J. Hwang, J. Electrochem. Soc., 2015, 162, F455.
16 Annen, V. Bambagioni, M. Bevilacqua, J. Filippi, A. Marchionni,
Conflicts of interest
There are no conflicts to declare.
¨
W. Oberhauser, H. Schonberg, F. Vizza, C. Bianchini and H. Gru¨tzmacher,
Angew. Chem., Int. Ed., 2010, 49, 7229.
`
17 M. Lefevre, J. P. Dodelet and P. Bertrand, J. Phys. Chem. B, 2002,
Notes and references
106, 8705.
1 (a) S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S. C. Menon, 18 T. Matsumoto, K. Kim, H. Nakai, T. Hibino and S. Ogo, Chem-
R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada and
CatChem, 2013, 5, 1368.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020