At the other end of the nucleophilicity spectrum, highly
electron-rich substrates required a slight modification to the
conditions. Thus, when using di- and trimethoxybenzene
derivatives as substrates (entries 9-12), it was necessary to add
small aliquots of nitrite periodically throughout the iodination;
otherwise, the reaction tended to stall. While dimethylresorcinol
and 1,3,5-trimethoxybenzene (entries 9 and 10, respectively) gave
excellent yields using this technique, the iodination of veratrole
References and notes
1.
Dohi, T.; Kita, Y.; in Iodine Chem. Appl. (Ed.: Kaiho, T.), John
Wiley & Sons, Inc, Hoboken, NJ, 2015, pp. 303–328.
Waldvogel, S.R. Sci. Synth. Knowl. Updat. 2010, 487–498.
Li, J.J.; in Name React., Springer, 2014, pp. 291–292.
Cahiez, G.; Moyeux, A.; Cossy, J. Adv. Synth. Catal. 2015, 357,
2
3
4
.
.
.
1
983–1989.
5.
Diederich, F.; Stang, P.J., Eds., Metal-Catalyzed Cross-Coupling
Reaction, Wiley-VCH, 1998.
(entry 11) was somewhat sluggish and was accompanied by the
6
7
.
.
Suzuki, A. Angew. Chem. Int. Ed. Engl. 2011, 50, 6722–6737.
Hu, B.; Miller, W.H.; Neumann, K.D.; Linstad, E.J.; DiMagno,S.G.
Chemistry 2015, 21, 6394–6398.
formation of 4-nitro-1,2-dimethoxybenzene. An even more
pronounced anomaly occurred in the case of p-dimethoxybenzene
(entry 12), which provided the iodination product (2m) in only
8
.
Racys, D.T.; Warrilow, C.E.; Pimlott, S.L.; Sutherland, A. Org.
Lett. 2015, 17, 4782–4785.
12% yield. Moreover, NMR analysis of the crude reaction
mixture indicated that 2-nitro-1,4-dimethoxybenzene was actually
the major product (molar ratio of nitration to iodination = ca.
9.
Leboeuf, D.; Ciesielski, J.; Frontier, A. Synlett 2013, 25, 399–402.
1
1
1
1
0. Schröder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc.
012, 134, 8298–8301.
1. Song, S.; Sun, X.; Li, X.; Yuan, Y.; Jiao, N. Org. Lett. 2015, 17,
886–2889.
2. Kahandal, , S.S.; Kale, S.R.; Gawande, M.B.; Zboril, R.; Varma,
R.S.; Jayaram, R.V. RSC Adv. 2014, 4, 6267–6274.
3. Yusubov, M.S.; Yusubova, R.Y.; Nemykin, V.N.; Maskaev, A.V.;
Geraskina, M.R.; Kirschning, A.; Zhdankin, V.V. European J. Org.
Chem. 2012, 2012, 5935–5942.
2
1.5:1).
2
It is noteworthy that the iodination efficiency of these highly
electron-rich substrates correlates strongly with their oxidation
2
9
potentials.
trimethoxybenzene are well behaved and also have the highest
redox potentials (E = 1.55 and 1.54 V, respectively); veratrole
= 1.42 V) provides moderate yield; and p-dimethoxybenzene
= 1.28 V) gives the poorest iodination result. In the latter
Thus,
dimethylresorcinol
and
1,3,5-
½
1
1
1
4. Iskra, J.; Stavber, S.; Zupan, M. Synthesis (Stuttg). 2004, 2004,
(
(
E
E
½
1
869–1873.
5. Stavber, G.; Iskra, J.; Zupan, M.; Stavber, S. Adv. Synth. Catal.
008, 350, 2921–2929.
½
two cases, it appears that the arene substrate intercepts the
nitrosonium cation in an SET process (as shown in Scheme 3)
2
6. Iskra, J.; Stavber, S.; Zupan, M. Tetrahedron Lett. 2008, 49, 893–
30
through a well-established pathway. The formation of this by-
product has the collateral disadvantage of depleting the
nitrosonium catalyst, essentially shutting down the iodination
reaction. Notably, this competing nitration pathway for very
895.
17. Bedrač, L.; Iskra, J. Adv. Synth. Catal. 2013, 355, 1243–1248.
1
1
2
2
8. Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chemie - Int. Ed. 2009,
8, 8424–8450.
9. Berkessel, A.; Adrio, J.A.; Hüttenhain, D.; Neudörfl, J.M. J. Am.
Chem. Soc. 2006, 128, 8421–8426.
4
28
electron-rich arenes was not reported by Wang et al.
0. Berkessel, A.; Adrio, J.A. J. Am. Chem. Soc. 2006, 128, 13412–
1
3420.
1. Možina, Š.; Stavber, S.; Iskra, J. J. Org. Chem. 2016,
doi:10.1002/ejoc.201601339
2
2
2. Morton, J.R.; Wilcox, H.W. Inorg. Synth. 1953, 4, 48–52.
3. Horvitz, D.; Shaw, R.J.; Baugh, W.D. Manufacture of Interhalogen
Compounds and Halogenoids, 1969, 3,423,175.
2
2
4. Bailleux, S.; Duflot, D.; Aiba, S.; Nakahama, S.; Ozeki, H. Chem.
Phys. Lett. 2016, 650, 73–75.
5. O’Driscoll, P.O.; Lang, K.; Minogue, N.; Sodeau, J. J. Phys. Chem.
A 2006, 110, 4615–4618.
2
2
6. Park, J.Y.;Lee, Y.N. J. Phys. Chem. 1988, 92, 6294–6302.
7. Ben-Daniel, R.; De Visser, S.P.; Shaik, S.; Neumann, R. J. Am.
Chem. Soc. 2003, 125, 12116–12117.
2
8. Wang, K.; Wang, X.; Zhang, G.; Liang, X. Jingxi Huagong 2009,
Scheme 3. Mechanism for the nitration of electron-rich
arenes.
2
6, 715–719, 728.
29. Luo, P.; Feinberg, A.M.; Guirado, G.; Farid, S.; Dinnocenzo, J.P. J.
Org. Chem. 2014, 79, 9297–9304.
In summary, we have shown that molecular iodine in the
presence of catalytic quantities of nitrite and hydrochloric acid in
fluorinated solvent represents a convenient and efficient means
for the aerobic oxidative iodination of moderately electron-rich
aromatic substrates. We continue to study this interesting system
with respect to mechanistic detail, as well as additional
applications for halogenation.
3
0. Kim, E.K.; Kochi, J.K. J. Org. Chem. 1989, 54, 1692–1702.
Acknowledgments
The authors gratefully acknowledge the Fulbright Scholar
Program (Grant No. 48131678), the Slovenian Research Agency
(Program P1-0134 and Bilateral Project BI-US/15-16-083), and
the Slovene Human Resources Development and Scholarship
Fund for their financial support of this work.