Organometallics 1999, 18, 5183-5186
5183
Syn th esis of Th iol, Selen ol, a n d Tellu r ol Ester s by th e
Rea ction of Or ga n och a lcogen o Mer cu r ia ls w ith Acid
Ch lor id es
Claudio C. Silveira,* Antonio L. Braga, and Enrique L. Larghi
Departamento de Quı´mica, UFSM, Caixa Postal 5001, 97105-900 Santa Maria, RS, Brazil
Received J uly 27, 1999
Summary: Thiol, selenol, and tellurol esters were pre-
pared by the reaction of bis(organochalcogeno)mercurials
with acid chlorides in chloroform or carbon tetrachloride
and in the presence of tetrabutylammonium halides as
catalysts.
halides with mercaptans,13 selenols,14 or dichalco-
genides,15 as well as their alkali metal salts.16 In
addition, carboxylic acids are also transformed into thiol
and selenol esters by treatment with arylthio- or ar-
ylselenocyanates and tributyl phosphine in dichlo-
romethane.17 Group IIIA organyl chalcogenides (B and
Al) convert carboxylic acid esters into their thiol18 and
selenoll9 analogues. Also, aldehydes react under Tish-
chencko-type conditions to afford all of the isologues.20
Thiol esters have been prepared by the acid-catalyzed
hydrolysis of thioacetylenes.21 Miscellaneous methods
are summarized in ref 22.
Bis(organochalcogenyl)mercury compounds have been
long known, but aside from applications related to
inorganic chemistryl or solid-state chemistry in the
development of semiconductors,2 no organic chemistry
has been associated with this class of compounds. In
contrast, related parent compounds such as (organo-
chalcogenyl) cadmium,3 lead,4 thallium,5 and silver6
reagents have proved to be useful sources of nucleophilic
moieties. Reasoning that those mercury compounds
have never been reported as nucleophiles due to their
poor reactivity and low yields attained under classical
reaction conditions,3-6 it was decided to explore the
scope and limitations of the reaction of bis(organochal-
cogenyl)mercury compounds with acyl chlorides, as an
approach to the synthesis of organochalcogenol esters.
Since many of these methodologies require vigorous
reaction conditions, often dealing with moisture- or air-
sensitive reagents and due to the growing interest in
new organic strategies for the production of chalcogenol
ester compounds, we wish to report here a new method
for their synthesis based on the reaction of bis(orga-
nochalcogenyl)mercury compounds with acyl chlorides
under tetrabutylammonium halide catalysis, as shown
in eq 1. The starting mercurials, bis(phenylthiolate)Hg
(1), bis(phenylselenolate)Hg (2), bis(n-butyltellurolate)-
Hg (3), bis(ethanethiolate)Hg (4), and bis[(2-methyl)-2-
propanethiolate)]Hg (5), are stable solids, easily pre-
pared by the reaction of metallic Hg with the correspond-
ing thiols, diphenyl diselenide, or di-n-butyl ditelluride,
Thiol, selenol, and tellurol esters are useful synthetic
intermediates employed as mild acyl-transfer reagents,5a,7
building blocks for heterocyclic compounds (oxazole,8
â-lactone9), and precursors of acyl radicals10 and an-
ions11 and for asymmetric aldol reactions.12 These
compounds are usually available by the reaction of acyl
(11) Hiiro, T.; Morita, Y.; Inoue, T.; Kambe, N.; Ogawa, A.; Ryu, I.;
Sonoda, N. J . Am. Chem. Soc. 1990, 112, 455.
* Corresponding author. Phone: + 55.55.220.8754/220.8669. Fax:
+ 55.55.220.8754. E-mail: silveira@quimica.ufsm.br.
(1) (a) Lechner, J . Chem. Ber. 1915, 48, 1425. (b) Wertheim, E. J .
Am. Chem. Soc. 1929, 51, 3661. (c) Bradley, D. C.; Kunchur, N. R. J .
Chem. Phys. 1964, 40, 2258. (d) Liesk, Von J .; Klar, G. Z. Anorg. Allg.
Chem. 1977, 435, 103. (e) Dance, N. S.; J ones, C. H. W. J . Organomet.
Chem. 1978, 152, 175. (f) Okamoto, Y.; Yano, T. J . Organomet. Chem.
1971, 29, 99. (g) Paige, H. L.; Passmore, J . Inorg. Nucl. Chem. Lett.
1973, 9, 277.
(2) Steigerwald, M. L.; Sprinkle, C. R. J . Am. Chem. Soc. 1987, 109,
7200.
(3) Rheinboldt, H.; Giesbrecht, E. Chem. Ber. 1955, 88, 674.
(4) Loevenich, J .; Fremdling, H.; Fo¨hr, M. Chem. Ber. 1929, 62, 2859.
(5) (a) Masamune, S.; Kamata, S.; Schilling, W. J . Am. Chem. Soc.
1975, 97, 3515. (b) Detty, M. R.; Wood, G. P. J . Org. Chem. 1980, 45,
80.
(12) Mukaiyama, T.; Uchiro, H.; Shiina, I.; Kobayashi, S. Chem. Lett.
1990, 1019.
(13) (a) Meshram, H. M.; Reddy, G. S.; Bindu, K. H.; Yadav, J . S.
Synlett 1998, 877. (b) J ordan, F.; Kudzin, Z.; Witczak, Z.; Hoops, P. J .
Org. Chem. 1986, 51, 571. (c) Kingsbury, C. A.; Greg, E. Phosphorus
Sulfur 1981, 315.
(14) Renson, M.; Draguet, C. Bull. Soc. Chim. Belg. 1962, 71, 260.
(15) (a) Weinstein, A. H.; Pierson, R. M.; Wargotz, B.; Yen, T. F. J .
Org. Chem. 1958, 23, 363. (b) Zang, Y.; Yu, Y.; Lin, R. Synth. Commun.
1993, 23, 189.
(16) (a) Renson, M.; Pietle, J . L. Bull. Soc. Chim. Belg. 1964, 73,
507. (b) Kanda, T.; Nakaiida, S.; Murai, T.; Kato, S. Tetrahedron Lett.
1989, 30, 1829. (c) Viana, L. H.; Dabdoub, M. J . Synth. Commun. 1992,
22, 1619.
(17) Grieco, P. A.; Yokoyama, Y.; Williams, E. J . Org. Chem. 1978,
43, 1283.
(6) Baxter, A. J . G.; Ponsford, R. J .; Southgate, R. J . Chem. Soc.,
Chem. Commun. 1980, 429.
(7) (a) Gerlach, H.; Thalmann, A. Helv. Chim. Acta 1974, 57, 2661.
(b) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates, G. S.
J . Am. Chem. Soc. 1977, 99, 6756. (c) Kozikowski, A. P.; Ames, A. J .
Org. Chem. 1978, 43, 2735.
(8) (a) Alvarez-Ibarra, C.; Orellana, G.; Quiroga, M. L. Synthesis
1989, 560. (b) Kozikowski, A. P.; Ames, A. J . Am. Chem. Soc. 1980,
102, 860.
(9) Danheiser, R. L.; Nowick, J . S. J . Org. Chem. 1991, 56, 1176.
(10) Pfenninger, J .; Heuberger, C.; Graf, W. Helv. Chim. Acta 1980,
63, 2328. (b) Boger, D. L.; Mathvink, R. J . J . Am. Chem. Soc. 1990,
112, 4003. (c) Boger, D. L.; Mathvink, R. J . J . Org. Chem. 1992, 57,
1429. (d) Chen, C.; Crich, D.; Papadatos, A. J . Am. Chem. Soc. 1992,
114, 8313.
(18) (a) Hatch, R. P.; Wienreb, S. M. J . Org. Chem. 1977, 42, 3960.
(b) Cohen, T.; Gapinski, R. E. Tetrahedron Lett. 1978, 19, 4319.
(19) Kozikowski, A. P.; Ames, A. Tetrahedron 1985, 41, 4821.
(20) Inoue, T.; Takeda, T.; Kambe, N.; Ogawa, A.; Ryu, I.; Sonoda,
N. J . Org. Chem. 1994, 59, 5824.
(21) Braga, A. L.; Rodrigues, O. E. D.; de Avila, E.; Silveira, C. C.
Tetrahedron Lett. 1998, 39, 3395.
(22) (a) Back, T. G.; Collins, S.; Kerr, R. G. J . Org. Chem. 1981, 46,
1564. (b) Schiesser, C. H.; Skidmore, M. A. J . Chem. Soc., Perkin Trans.
1 1997, 2689. (c) Kellogg, B. A.; Brown, R. S.; Donald, R. S. J . Org.
Chem. 1994, 59, 4652. (d) Hewkin, C. T. H.; J ackson, R. F. W.; Clegg,
W. J . Chem Soc., Perkin Trans. 1 1991, 3091. (e) Hoshi, M.; Masuda,
Y.; Arase, A. Bull. Chem. Soc. J pn. 1988, 61, 3764. (f) Inoue, T.; Kambe,
N.; Ryu, I.; Sonoda, N. J . Org. Chem. 1994, 59, 8209. (g) Ricci, A.;
Danieli, R.; Pirazzini, G. J . Chem. Soc., Perkin Trans. 1 1977, 1069.
10.1021/om990589e CCC: $18.00 © 1999 American Chemical Society
Publication on Web 11/05/1999