Table 1 T
m
values and thermodynamic data of duplex formation of oligonucleotidesa,b
2
1
DS/cal K
DG298/kcal
1
21
21
Compound
d(G-C)
m
T /°C
DH/kcal mol2
mol
mol
4
·d(G-C)
4
5·5
4
59
53
72
88
84
67
67
47
73
71
267
265
2179
2178
211.9
210.2
7
7
d(c G-C)
d(c z G-C)
4
·d(c G-C)
6·6
·d(c z G-C)
7
8
7 8
4
4
8
7·7
274
2193
214.5
7
7
8
7
7
c
c
c
4 4
d(Br c z GC) ·d(Br c z GC) 8·8
7
7
8
7
7
8
c
c
c
d(I c z G-C)
4
·d(I c z G-C)
4
9·9
7
7
7 7
d(Br c G-C)
4
·d(Br c G-C)
·d(I c G-C)
4
10·10
271
266
255
270
263
2188
2171
2150
2181
2162
213.0
212.6
28.4
214.3
212.9
7
7
7 7
d(I c G-C)
d(G-C) ·d(G-C)
4
4
11·11
3
7
3
12·12
7
8
7 7 8
d(Br c z G-C)
3
·d(Br c z G-C)
3
13·13
7
7
8
7 7 8
d(I c z G-C)
3 3
·d(I c z G-C) 14·14
a
. b Measured in 10 m NaCl. c Not measurable.
M Na cacodylate, 10 mM MgCl , 0.1 M
2
Oligonucleotide conc. is 10 m
M
exhibits a somewhat lower T
m
value than the bromo derivative
logenated compounds is the change of the pK values of
deprotonation (7-deaza-8-aza-2A-deoxyguanosine = 9.3; com-
pounds 1a,b = 9.0). This effect also increases the N-glycosylic
13 (Table 1). When comparing the thermodynamic data of the
duplexes 13·13 and 14·14 with the unmodified duplex 12·12 it
is apparent that a more favourable enthalpy term leads to duplex
stabilisation. This effect was much more pronounced in the
series of oligonucleotides containing 7-halogenated 8-aza-
8
bond stability and is most likely explained by the electron-
withdrawing effect caused by the 7-substituents. As a result, the
hydrogen bonds within the G-C base-pair are strengthened and
the duplex becomes stabilised. It was also shown that the
triphosphates of 8-aza-7-deazaguanine nucleosides are effi-
7
-deazaguanine than in those containing halogenated 7-deaza-
guanine.
From the chromatographic behaviour of the 7-halogenated
1
6
ciently incorporated into DNA using DNA polymerases; they
are useful for introducing reporter groups into a sterically
unproblematic position of the DNA molecule.
nucleosides 1a,b on RP-18 HPLC (Fig. 1) as well as of the
corresponding oligonucleotides 8, 9, 13 and 14 it is apparent
that the halogen substituents make the compounds more
hydrophobic. Thus, the major grooves of such DNA duplexes
become hydrophobic and water molecules, normally being
present in these grooves, are expelled. This can influence both
the enthalpy and the entropy of duplex formation. However,
enthalpic changes play the major role.
We thank Dr N. Ramzaeva for helpful discussions. Financial
support by the Bundesministerium für Bildung, Forschung und
Technologie (BMBF) is gratefully acknowledged.
Notes and References
Another difference which is observed for the 7-halogenated
-aza-7-deazaguanine nucleosides compared to the non-ha-
†
E-mail: Fraseela@rz.uni-Osnabrueck.de
8
1
2
3
F. Seela and H. Thomas, Helv. Chim., Acta, 1995, 78, 94.
N. Ramzaeva and F. Seela, Helv. Chim. Acta, 1996, 79, 1549.
C. W. Siegert, A. Jacob and H. Köster, Anal. Biochem., 1996, 243,
5
5.
4
5
S. N. Rao and P. A. Koliman, J. Am. Chem. Soc., 1986, 108, 3048.
F. Seela, N. Ramzaeva and M. Zulauf, Nucleosides Nucleotides, 1997,
1
6, 963.
6
C. R. Petrie, A. D. Adams, M. Stamm, J. Van Ness, S. M. Watanabe and
R. B. Meyer, Bioconjugate Chem., 1991, 2, 441.
7
8
9
F. Seela and H. Driller, Helv. Chim. Acta, 1988, 71, 1191.
F. Seela and G. Becher, Synthesis, 1998, 207.
2
Selected data for 3a: d
-C(2A)], 2.75 [m, H
.95 [m, H-C(4A)], 4.44 [m, H-C(3A)], 5.30 [d, J 4.5, HO-C(3A)], 6.37 [t,
J 6.5, H-C(1A)], 6.77–7.16 (2m, 13 arom. H), 11.86 (s, NH), 11.97 (s,
H
([ H
6
]DMSO) 1.03 [d, J 6.7, (CH
3
)
2
], 2.25 [m,
H
3
b
a
-C(2A)], 3.05 [m, H
2
-C(5A)], 3.70 (s, 2 CH
3
O),
2
NH). For 4a: d
J 6.7, (CH ], 2.25 [m, H
-C(5A)], 3.70 (s, 2 CH O), 3.92 [m, H-C(4A)], 4.44 [m, H- C(3A)], 5.29
d, J 4.2, HO-C(3A)], 6.37 [t, J 5.5, H-C(1A)], 6.76–7.33 (2m, 13 arom.
H), 11.83 (s, NH), 11.92 (s, NH). For 4b: d (CDCl ) 148.4, 148.5.
P
(CDCl
3
) 148.4, 148.5. For 3b: d
H
([ H
6
]DMSO) 1.12 [d,
3
)
2
b a
-C(2A)], 2.77 [m, H -C(2A)], 3.03 [m,
H
2
3
[
P
3
1
1
0 Oligonucleotide Purification Cartridges, Applied Biosystems, Weiter-
stadt, Germany.
7
8
+
4
1 Selected data for d(c z GC) 7: Calc.: 2412. Found (M ): 2412. For
7
7
8
+
7 7 8
d(Br c z GC)
Calc. 2918. Found (M ) 2915.
2 J. A. McDowell and D. H. Turner, Biochemistry, 1996, 35, 14077.
4 4
8: Calc.: 2727. Found (M ): 2728. For d(I c z GC) 9:
+
1
Fig.
1
HPLC profile of (a) 6-amino-1H-pyrazolo[3,4-d]pyrimidin-
13 F. Seela and H. Driller, Nucleic Acids Res., 1989, 17, 901.
14 F. Seela and S. Lampe, Helv. Chim. Acta, 1994, 77, 1003.
15 L. J. P. Latimer and J. S. Lee, J. Biol. Chem., 1991, 266, 13 849.
16 K. Mersmann and F. Seela, unpublished results.
4
1
(5H)-one, (b) 8-aza-7-deaza-2A-deoxyguanosine, (c) 1a and (d) 1b on a RP-
8 (200 3 10 mm) column. The following solvent systems were used: 0.1
M
3
(Et NH)OAc (pH 7.0)–MeCN (95:5) (A) and MeCN (B). They were used
according to the following profile: 20 min 5–20% B in A, 35 min 20–50%
B in A, 35 min 5% B in A.
Received in Glasgow, UK, 10th June 1998; 8/04414G
2018
Chem. Commun., 1998