Journal of the American Chemical Society
COMMUNICATION
Chem., Int. Ed. 2009, 48, 7752. (e) Bonaccorso, F.; Sun, Z.; Hasan, T.;
Ferrari, A. C. Nat. Photonics 2010, 4, 611.
(3) (a) Dresselhaus, M. S. Intercalation in Layered Materials; NATO
ASI Series; Plenum Press: New York, 1986. (b) Friend, R. H.; Yoffe,
A. D. Adv. Phys. 1987, 36, 1. (c) Chen, J.; Tao, Z.-D.; Li, S.-L. Angew.
Chem., Int. Ed. 2003, 115, 2197. (d) Seo, J.-w.; Jun, Y.-w.; Park, S.-w; Nah,
H.; Moon, T.; Park, B.; Kim, J.-G.; Kim, Y. J.; Cheon, J. Angew. Chem., Int.
Ed. 2007, 46, 8828. (e) Jang, J.-t.; Jeong, S.; Seo, J.-w.; Kim, M.-C.; Sim,
E.; Oh, Y.; Nam, S.; Park, B.; Park, B.; Cheon, J. J. Am. Chem. Soc. 2011,
133, 7636. (f) Sekar, P.; Greyson, E. C.; Barton, J. E.; Odom, T. W.
J. Am. Chem. Soc. 2005, 127, 2054. (g) Park, K. H.; Jang, K.; Son, S. U.
Angew. Chem. Int. Ed. 2006, 45, 4608. (h) Radisavljevic, B.; Radenovic,
A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147. (i)
Coleman, J. N.; Lotya, M.; O Neill, A.; Bergin, S. D.; King, P. J.; Khan,
U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.;
Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.;
Boland, J. J.; Wang, J. M.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.;
Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen,
K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
Figure 5. TEM images of toroidal-shaped nanostructures synthesized
by reactions of TiS discs with Ag, Mn, and Cd cations: (a) TiS ꢀAg S;
2
2
2
(b) TiS
2
ꢀMnS; (c) CdS. The insets show higher-magnification images.
The principles of using 2D layered templates for building
toroidal nanocrystals seem to be broadly applicable. We carried
out reactions between TiS and Ag, Mn, and Cd cations, which
2
consistently resulted in similar toroidal intermediate nanostruc-
tures of TiS ꢀAg S and TiS ꢀMnS and a fully converted toroid
2
2
2
of CdS, respectively (Figure 5).
(4) (a) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Phys. Rev. B
Since the first description of hollow nanocrystals involving the
use of preformed nanocrystals as templates, research activities
have been rapidly extended to produce various shapes and
2
006, 73, 125415. (b) Jaramillo, T. F.; Jorgensen, , K. P.; Bonde, J.;
Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. (c)
Cervantes-Sodi, F.; Csanyi, G.; Piscanec, S.; Ferrari, A. C. Phys. Rev. B
2008, 77, 165427. (d) Suenaga, K.; Koshino, M. Nature 2010, 468, 1088.
5
,12,13
chemical compositions.
Nonetheless, the previous work
(5) (a) Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai,
has not been extended to 2D layered materials until now. Our
findings of regioselective chemical reactivity and proposed
mechanisms in the structural transformation of 2D layered
nanocrystals are unprecedented. In addition, we have demon-
strated that our approach can serve as a general protocol for the
synthesis of inorganic toroidal nanocrystals. This study has not
only provided new insight into the unique chemical reactivity of
G. A.; Alivisatos, A. P. Science 2004, 304, 711. (b) Yin, Y.; Erdonmez,
C. K.; Hughes, S.; Alivisatos, A. P. Adv. Funct. Mater. 2006, 16, 1389. (c)
Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.;
Zacharias, M.; G €o sele, U. Nat. Mater. 2006, 5, 627. (d) Peng, H.; Xie, C.;
Schoen, D. T.; McIlwrath, K.; Zhang, X. F.; Cui, Y. Nano Lett. 2007,
7
, 3734. (e) Park, J.; Zheng, H.; Jun, Y.-w.; Alivisatos, A. P. J. Am. Chem.
Soc. 2009, 131, 13943. (f) Macdonald, J. E.; Sadan, M. B.; Houben, L.;
Popov, I.; Banin, U. Nat. Mater. 2010, 9, 810.
2
D layered nanomaterials but also revealed that the roles of edges
and layers should be taken into account when considering the
design and applications of 2D nanocrystals.
(6) (a) Haft, D.; Schulhauser, C.; Govorov, A. O.; Warburton, R. J.;
Karral, K.; Garc
ꢀ
ia, J. M.; Schoenfeld, W.; Petroff, P. M. Physica E 2002,
13, 165. (b) Aizpurua, J.; Hanarp, P.; Sutherland, D. S.; K €a ll, M.; Bryant,
G. W.; Abajo, F. J. G. D. Phys. Rev. Lett. 2003, 90, No. 057401. (c)
Kippenberg, T. J; Spillane, S. M.; Vahala, K. J. Phys. Rev. Lett. 2004,
’
ASSOCIATED CONTENT
9
3, 083904.
S
Supporting Information. Details of synthetic methods,
b
(7) (a) Ross, C. A.; Castano, F. J.; Morecroft, D.; Jung, W.; Smith,
elemental mapping, and XRD patterns. This material is available
free of charge via the Internet at http://pubs.acs.org.
I. H.; Moore, T. A.; Hayward, T. J.; Bland, J. A. C.; Bromwich, T. J.;
Petford-Long, A. K. J. Appl. Phys. 2006, 99, No. 08S501. (b) Gao, X. S.;
Adeyeye, A. O.; Goolaup, S.; Singh, N.; Jung, W.; Castano, F. J.; Ross,
C. A. J. Appl. Phys. 2007, 101, No. 09F505.
’
AUTHOR INFORMATION
(8) (a) Lu, G.; Li, W.; Yao, J.; Zhang, G.; Yang, B.; Shen, J. Adv.
Corresponding Author
Mater. 2002, 14, 1049. (b) Balzer, F.; Beermann, J.; Bozhevolnyi, S. I.;
Simonsen, A. C.; Rubahn, H.-G. Nano Lett. 2003, 3, 1311. (c) Zhang, X.;
Choi, H. S.; Armani, A. M. App. Phys. Lett. 2010, 96, 153304. (d) Lin, S.;
Schonbrun, E.; Crozier, K. Nano Lett. 2010, 10, 2408.
(
9) (a) McLellan, J. M.; Geissler, M.; Xia, Y. J. Am. Chem. Soc. 2004,
’
ACKNOWLEDGMENT
1
26, 10830. (b) Hobbs, K. L.; Larson, P. R.; Lian, G. D.; Keay, J. C.;
Johnson, M. B. Nano Lett. 2004, 4, 167. (c) Lee, E.; Kim, J.-K.; Lee, M.
This study was financially supported by the Creative Research
Initiative (2010-0018286), WCU (2008-9-1955), BK21, and
KBSIꢀHVEM (JEMꢀARM 1300S). We thank M.-C. Kim and
Professor E. Sim for surface energy calculations.
J. Am. Chem. Soc. 2009, 131, 18242.
(10) TiS , JCPDS no. 15-0853; Cu S, ICSD no. 16242.
2
2
(11) (a) Tenne, R. Angew. Chem., Int. Ed. 2003, 42, 5124. (b)
According to the results of ab initio calculations, the surface energies
of edge faces, such as (100) or (101), of TiS
that of the planar face (001).
2
are ∼4.5 times larger than
’
REFERENCES
(
1) (a) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem.
(12) (a) Huang, X.; Zhang, H.; Guo, C.; Zhou, Z.; Zheng, N. Angew.
Chem., Int. Ed. 2009, 48, 4808. (b) Seo, D.; Song, H. J. Am. Chem. Soc.
2009, 131, 18210. (c) Wang, Z.; Luan, D.; Li, C. M.; Su, F.; Madhavi, S.;
Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2010, 132, 16271. (d)
Korhonen, J. T.; Hiekkataipale, P.; Malm, J.; Karppinen, M.; Ikkala, O.;
Ras, R. H. A. ACS Nano 2011, 5, 1967.
(13) Shevchenko, E.; Bodnarchuck, M. I.; Kovalenko, M. V.; Tala-
pin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P. Adv. Mater.
2008, 20, 4323.
Rev. 2005, 105, 1025. (b) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E.
Angew. Chem., Int. Ed. 2009, 48, 60. (c) Mann, S. Nat. Mater. 2009,
8
, 781. (d) Zecchina, A.; Bordiga, S.; Groppo, E. Selective Nanocatalysts
and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis,
st ed.; Wiley-VCH: Weinheim, Germany, 2011.
2) (a) Geim, A. K.; Novoselov, K. S. Nature 2007, 6, 183. (b) Tung,
V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25.
c) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. (d) Rao, C. N.
R.; Sood, A. K.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Angew.
1
(
(
1
4503
dx.doi.org/10.1021/ja2049594 |J. Am. Chem. Soc. 2011, 133, 14500–14503