2408
M. Kuil et al. / Tetrahedron Letters 46 (2005) 2405–2409
1
00
the ligand leads to similar reaction rates as when using
copper(I)-precursors. Preliminary mechanistic work is
discussed and more detailed studies are in progress.
7
5
2
5
0
5
0
Acknowledgements
premix F
premix F + Cu(I)I
no premix
We would like to thank Dr. M. Tromp from the Univer-
sity of Utrecht and J. A. J. den Hartog from Solvay
Pharmaceuticals for stimulating discussions. Solvay
Pharmaceuticals is kindly acknowledged for financial
support.
0
1
0
20
30
time (h)
Figure 3. Premixing of ligand F in the presence and in the absence of
Cu(I)I overnight before starting the reaction by addition of benzimid-
azole and 5-bromo-m-xylene. The lines through the points are drawn
for clarity.
References and notes
1
. For reviews see: (a) Hartwig, J. F. Synlett 1997, 329; (b)
Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805; (c) Hartwig, J. F. Acc.
Chem. Res. 1998, 31, 852; (d) Hartwig, J. F. Angew.
Chem., Int. Ed. 1998, 37, 2046; (e) Yang, B. H.; Buchwald,
S. L. J. Organomet. Chem. 1999, 576, 125; (f) Muci, A. R.;
Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131.
100
7
5
0
5
5
2
premix F
premix F + Cu(II)(OAc)2H2O
no premix
2
3
. (a) Mann, G.; Hartwig, J. F.; Driver, M. S.; Fern a´ ndez-
Rivas, C. J. Am. Chem. Soc. 1998, 120, 827; (b) Hartwig, J.
F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.;
Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575; (c)
Old, D. W.; Harris, M. C.; Buchwald, S. L. Org Lett.
0
0
1
0
20
30
time (h)
2
000, 2, 1403.
. (a) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed.
003, 42, 5400; (b) Kunz, K.; Scholz, U.; Ganzer, D.
Figure 4. Premixing of ligand F in the presence and in the absence of
Cu(II)(OAc) ÆH O overnight before starting the reaction by addition
of benzimidazole and 5-bromo-m-xylene. The lines through the points
2
2
2
Synlett 2003, 2428.
. Arterburn, J. B.; Pannala, M.; Gonzalez, A. M. Tetra-
hedron Lett. 2001, 42, 1475.
. (a) Kiyomori, A.; Marcoux, J.-F.; Buchwald, S. L.
Tetrahedron Lett. 1999, 40, 2657; (b) Lam, P. Y. S.;
Vincent, G.; Clark, C. G.; Deudon, S.; Jadhav, K. J.
Tetrahedron Lett. 2001, 42, 3415; (c) Collman, J. P.;
Zhong, M.; Zhang, C.; Costanzo, S. J. Org. Chem. 2001,
4
5
are drawn for clarity.
of Cu(I)I during premixing did notaffect ht e speed of
the subsequent reaction. Premixing ligand F was suffi-
cient to increase the reaction rate. In contrast, the pres-
ence of Cu(II)(OAc) ÆH O during premixing did affect
the reaction profile (Fig. 4). If Cu(II)(OAc) ÆH O was
present during premixing, the reaction rate increased.
This may be an indication that the Cu(II) species was
which is supposed to be the cat-
Furthermore, the reaction must be
performed under an inert atmosphere, since reaction
under air did not result in product formation. Further
studies are required for complete elucidation of the
mechanism.
2
2
6
6, 7892.
2
2
6
. Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars,
A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
. (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382;
For reviews, see: (b) Bacon, R. G. R.; Hill, H. A. O. J.
Chem. Soc. 1964, 1097; (c) Fanta, P. E. Synthesis 1974, 9;
(d) Sainsbury, M. Tetrahedron 1980, 36, 3327; (e) Lindley,
J. Tetrahedron 1984, 40, 1433, and references cited therein.
. Lan, J.-B.; Chen, L.; Yu, X.-Q.; You, J.-S.; Xie, R.-G.
Chem. Commun. 2004, 188.
. (a) Collman, J. P.; Zhong, M.; Zhang, C.; Costanzo, S. J.
Org. Chem. 2001, 66, 7892; (b) Collman, J. P.; Zhong, M.;
Zeng, L.; Costanzo, S. J. Org. Chem. 2001, 66, 1528; (c)
Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233.
0. van Berkel, S. S.; van den Hoogenband, A.; Terpstra, J.
W.; Tromp, M.; van Leeuwen, P. W. N. M.; van
Strijdonck, G. P. F. Tetrahedron Lett. 2004, 45, 7659.
11. Some examples: (a) Gujadhur, R. K.; Bates, C. G.;
Venkataraman, D. Org. Lett 2001, 3, 4315; (b) Klapars,
A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
7
2
1
firstreduced to Cu(I),
2,23
2
alytic species.
8
9
In summary, we have developed a highly efficientcop-
per-catalyzed C–N coupling reaction of azaheterocycles
with aryl halides using the chelating nitrogen ligand
1
4
,7-dichloro-1,10-phenanthroline. The 4,7-dichloro-1,10-
phenanthroline ligand gave superior conversions com-
pared to the parent 1,10-phenanthroline. Aryl iodides,
aryl bromides, and heteroaryl bromides can be coupled
with a variety of azoles using this procedure. We have
shown that the cheap and stable copper precursors
Cu(I)I and Cu(II)(OAc) ÆH O can be used in this reac-
1
24, 7421; (c) Kwong, F. Y.; Klapars, A.; Buchwald, S. L.
Org. Lett. 2002, 4, 581; (d) Job, G. E.; Buchwald, S. L.
Org. Lett. 2002, 4, 3703; (e) Kwong, F. Y.; Buchwald, S.
L. Org. Lett. 2003, 5, 793; (f) Klapars, A.; Antilla, J. C.;
Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,
7727; (g) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J.
Am. Chem. Soc. 2002, 124, 11684; (h) Buchwald, S. L.;
Klapars, A.; Antilla, J. C.; Job, G. E.; Wolter, M.; Kwong,
2
2
tion. Furthermore, the cheap and mild base K CO
2
3
could be efficiently used. Predissolving the 4,7-di-
chloro-1,10-phenanthroline ligand increases initial reac-
tion rates dramatically. When copper(II)-precursors are
used, premixing the copper(II)-precursor together with