LETTER
Figure
A New Convenient Synthesis of Ethenyl Ethers
1963
References
(1) See for example: (a) Leconte, S.; Dujardin, G.; Brown, E.
Eur. J. Org. Chem. 2000, 4, 639. (b) Gizecki, P.; Dhal, R.;
Toupet, L.; Dujardin, G. Org. Lett. 2000, 5, 585.
(c) Dujardin, G.; Rossignol, S.; Brown, E. Synthesis 1998,
763. (d) Jao, E.; Slifer, P. B.; Lalancette, R.; Hall, S. S. J.
Org. Chem. 1996, 61, 2865. (e) Denmark, S. E.; Scott, E.;
Martinborough, E. A. J. Am. Chem. Soc. 1999, 121, 3046.
(f) Denmark, S. E.; Seierstad, M.; Herbert, B. J. Org. Chem.
1999, 64, 884, and cited references for previous work in the
area.
The configuration of the -alkoxyvinyl sulfones 1a-i is
trans in any case, i.e. they possess the same configuration
as the starting BPSE, thus confirming the stereospecificity
of the reaction.
(2) (a) Kusama, H.; Mori, T.; Mitani, I.; Kashima, H.; Isao, K.
Tetrahedron Lett. 1997, 38, 4129. (b) Marko, I. E.; Evans,
G. R. Tetrahedron Lett. 1994, 35, 2771. (c) Posner, G. H.;
Wettlaufer, D. G. J. Org. Chem. 1990, 55, 3967. (d)Posner,
G. H.; Carry, J.-C.; Lee, J. K.; Bull, D. S.; Dai, H.
Tetrahedron Lett. 1994, 35, 1321, and cited references for
previous work in the area.
(3) (a) Furman, B.; Krajewski, P.; Kaluza, Z.; Thuermer, R.;
Voelter, W. J. Chem. Soc., Perkin Trans. 2 1999, 217.
(b) Griesbeck, A. G.; Stadtmueller, S.; Busse, H.; Bringman,
G.; Budrus, J. Chem. Ber. 1992, 125, 933, and cited
references for previous work in the area.
(4) (a) Boa, A. N.; Dawkins, D. A.; Hergueta, A. R.; Jenkins, P.
J. Chem. Soc., Perkin Trans. 1 1994, 953. (b) Boa, A. N.;
Booth, S. E.; Dawkins, D. A.; Jenkins, P. R.; Fawcett, J.;
Russell, D. R. J. Chem. Soc., Perkin Trans. 1 1993, 1277,
and cited references for previous work in the area.
(5) Bauld, N. L. Tetrahedron 1989, 45, 5307.
(6) (a) Clark, J. S.; Kettle, J. G. Tetrahedron 1999, 55, 8231.
(b) Baylon, C.; Heck, M.-P.; Mioskowski, C. J. Org. Chem.
1999, 64, 3354, and cited references for previous work in the
area.
(7) (a) Khanjin, N. A.; Snyder, J. P.; Menger, F. M. J. Am.
Chem. Soc. 1999, 121, 11831. (b) Grieco, P. A.; Clark, J. D.;
Jagoe, C. T. J. Am. Chem. Soc. 1991, 113, 5488, and cited
references for previous work in the area.
(8) (a) Militzer, H.-C.; Schömenauer, S.; Otte, C.; Puls, C.;
Hain, J.; Bräse, S.; de Meijere, A. Synthesis 1993, 998.
(b) Vallin, K. S. A.; Larhed, M.; Johansson, K.; Hallberg, A.
J. Org. Chem. 2000, 65, 4537, and cited references for
previous work in the area.
(9) (a) Akita, H.; Chen, C. Y.; Kato, K. Tetrahedron 1998, 54,
11011. (b) Nicolaou, K. C.; van Delft, F.; Ohshima, T.;
Vourloumis, D.; Xu, J.; Hosokawa, S.; Pfefferkorn, I.; Kim,
S.; Li, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2520, and
cited references for previous work in the area.
(10) (a) Curran, D. P.; Geib, S. J.; Kuo, L. H. Tetrahedron Lett.
1994, 35, 6235. (b) Reetz, M. T.; Gansäuer, A. Tetrahedron
1993, 49, 6025.
The reductive desulfonylation occurred under mild reac-
tion conditions using the standard sodium amalgam re-
duction of arylsulfonyl derivatives in buffered (NaH2PO4)
methanolic solution.20 After completion, the crude reac-
tion mixture was filtered over Celite and washed with
dichloromethane, then extracted with the same solvent
and washed with 5% aqueous NaHCO3. Careful evapora-
tion of the organic phase afforded the crude enol ether,
which was highly pure in all cases, with the exception of
2c where a comparable amount of cyclopropyldiphenyl-
methane was also formed. In this latter case, the high sta-
bility of the cyclopropyldiphenylmethyl radical may be
responsible for such an observation. It should be noted
that the intrinsic reactivity of enol ethers towards water
even under slightly acidic conditions would inevitably re-
sult in hydrolytic cleavage of the =HC–O– bond. Actual-
ly, purification by silica gel chromatography proved
detrimental as it resulted in very poor recovery of the de-
sired vinyl ether.
Other reducing agents previously reported to promote re-
ductive desulfonylation - lithium naphthalenide,21 magne-
sium in methanol22 - were also tested but led to inferior
results.
In conclusion, the above procedure represents a novel pre-
parative method for the production of parent vinyl ethers.
The methodology - which avoids the use of acidic reaction
conditions - is of general utility and constitutes a valuable
alternative to the existing intrinsically hazardous and/or
noxious methodologies. The case of enol ether 2i, which
has been recently reported from vinylation of cholesterol
with gaseous acetylene at high pressure and tempera-
ture,12 is illustrative of the mildness of the method and of
its potentiality. Extension of our methodology to more
complex molecules such as carbohydrates is currently in-
vestigated in our laboratory.
(11) Reppe, W. Liebigs Ann. Chem. 1956, 601, 81.
(12) Trofimov, B. A.; Vasil'tsov, A.; Schmidt, E.; Zaitsev, A. B.;
Mikhaleva, A. I.; Afonin, A. V. Synthesis 2000, 1521.
(13) See for example: Palani, N.; Chadha, A.; Balasubramanian,
K. J. Org. Chem. 1998, 63, 5318.
(14) Dulcere, J.-P.; Rodriguez, J. Synthesis 1993, 399.
(15) Pasquato, L.; De Lucchi, O. Encyclopedia of Reagents for
Organic Synthesis, Vol. 1; Paquette, L. A., Ed.; Wiley:
Chichester, 1995, 547.
(16) It should be noted that the enantiopure ethenyl ethers chosen
by us carry the chiral auxiliary at the minimum distance from
the reactive site. References 1–10 have been selected from
the vast recent literature about uses of ethenyl ethers in
asymmetric synthesis.
Aknowledgement
E.C. thanks Ca’ Foscari University for granting her traineeship at
the University of Orleans. Work partially supported by MURST
(Rome) within the national project ’Stereoselezione in Sintesi Orga-
nica. Metodologie e Applicazioni’.
Synlett 2001, No. 12, 1962–1964 ISSN 0936-5214 © Thieme Stuttgart · New York