Page 9 of 11
Journal of the American Chemical Society
Preparation, characterization, properties, and applications. Chem. Rev.
2008, 108, 3893–3957.
4) Kao, J.; Thorkelsson, K.; Bai, P.; Rancatore, B. J.; Xu, T.
Toward functional nanocomposites: taking the best of nanoparticles,
polymers, and small molecules. Chem. Soc. Rev. 2013, 42, 2654–
(22) Song, N.; Yang, Y.-W. Molecular and supramolecular
switches on mesoporous silica nanoparticles. Chem. Soc. Rev. 2015,
44, 3474–3504.
(23) Elacqua, E.; Zheng, X.; Shillingford, C.; Liu, M.; Weck, M.
Molecular Recognition in the Colloidal World. Acc. Chem. Res. 2017,
50, 2756–2766.
(24) Chang, S.; Hamilton, A. D. Molecular Recognition of
Biologically Interesting Substrates - Synthesis of an Artificial
Receptor for Barbiturates Employing 6 Hydrogen-Bonds. J. Am.
Chem. Soc. 1988, 110, 1318–1319.
(25) Chen, S. B.; Binder, W. H. Dynamic Ordering and Phase
Segregation in Hydrogen-Bonded Polymers. Acc. Chem. Res. 2016,
49, 1409–1420.
(26) Knight, A. S.; Larsson, J.; Ren, J. M.; Zerdan, R. B.;
Seguin, S.; Vrahas, R.; Liu, J.; Ren, G.; Hawker, C. J. Control of
amphiphile self-assembly via bioinspired metal ion coordination. J.
Am. Chem. Soc. 2018, 140, 1409–1414.
(27) Lohmeijer, B. G. G.; Schubert, U. S. Playing LEGO with
macromolecules: Design, synthesis, and self-organization with metal
complexes. J. Poly. Sci. Part a-Poly. Chem. 2003, 41, 1413–1427.
(28) Winter, A.; Hager, M. D.; Newkome, G. R.; Schubert, U. S.
The marriage of terpyridines and inorganic nanoparticles: synthetic
aspects, characterization techniques, and potential applications. Adv.
Mater. 2011, 23, 5728–5748.
(29) Deng, G.; Tang, C.; Li, F.; Jiang, H.; Chen, Y. Covalent
cross-linked polymer gels with reversible sol-gel transition and self-
healing properties. Macromolecules 2010, 43, 1191–1194.
(30) Rossow, T.; Habicht, A.; Seiffert, S. Relaxation and
Dynamics in Transient Polymer Model Networks. Macromolecules
2014, 47, 6473–6482.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(
2
678.
(5)
Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles
for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014,
3, 6570–6597.
6) Rahim, F. A.; Dong-Hwan, K. Nanoparticle polymer
4
(
composites on solid substrates for plasmonic sensing applications.
Nano Today 2016, 11, 415–434.
(7)
Chen, Y.; Thakar, R.; Snee, P. T. Imparting nanoparticle
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
function with size-controlled amphiphilic polymers. J. Am. Chem.
Soc. 2008, 130, 3744–3745.
(8)
Nakano, T.; Kawaguchi, D.; Matsushita, Y. Anisotropic
self-assembly of gold nanoparticle grafted with polyisoprene and
polystyrene having symmetric polymer composition. J. Am. Chem.
Soc. 2013, 135, 6798–6801.
(9)
Liu, Z.; Peng, W.; Zare, Y.; Hui, D.; Rhee, K. Y. Predicting
the electrical conductivity in polymer carbon nanotube
nanocomposites based on the volume fractions and resistances of the
nanoparticle, interphase, and tunneling regions in conductive
networks. RSC Advances 2018, 8, 19001–19010.
(10) Chen, H. Y.; Lo, M. K. F.; Yang, G. W.; Monbouquette, H.
G.; Yang, Y. Nanoparticle-assisted high photoconductive gain in
composites of polymer and fullerene. Nat. Nanotechnol. 2008, 3,
543–547.
(11) Sharma, N.; McKeown, S. J.; Ma, X.; Pochan, D. J.;
Cloutier, S. G. Structure-property correlations in hybrid polymer-
nanoparticle electrospun fibers and plasmonic control over their
dichroic behavior. ACS Nano 2010, 4, 5551–5558.
(31) Wu, W. J.; Wang, J.; Chen, M.; Qian, D. J.; Liu, M. H.
Terpyridine-functionalized
NanoSiO
2
multi-dentate
linkers:
(12) Jang, S. G.; Kramer, E. J.; Hawker, C. J. Controlled
preparation, characterization and luminescent properties of their
metal-organic hybrid materials. J. Phy. Chem. C 2017, 121, 2234–
2242.
(32) Kay, E. R. Dynamic covalent nanoparticle building blocks.
Chem.-a Eur. J. 2016, 22, 10706–10716.
(33) Barnard, A.; Smith, D. K. Self-assembled multivalency:
dynamic ligand arrays for high-affinity binding. Angew. Chem. Int.
Ed. 2012, 51, 6572–6581.
(34) Martinez-Veracoechea, F. J.; Leunissen, M. E. The entropic
impact of tethering, multivalency and dynamic recruitment in systems
with specific binding groups. Soft Matter 2013, 9, 3213–3219.
(35) Schubert, U. S.; Eschbaumer, C. Functionalized oligomers
and copolymers with metal complexing segments: A simple and high
yield entry towards 2,2':6',2''-terpyridine monofunctionalized
telechelics. Macromol. Symp. 2001, 163, 177–187.
(36) Norsten, T. B.; Frankamp, B. L.; Rotello, V. M. Metal
directed assembly of terpyridine-functionalized gold nanoparticles.
Nano Lett. 2002, 2, 1345–1348.
(37) Dewi, M. R.; Gschneidtner, T. A.; Elmas, S.; Ranford, M.;
Moth-Poulsen, K.; Nann, T. Monofunctionalization and Dimerization
of Nanoparticles Using Coordination Chemistry. ACS Nano 2015, 9,
1434–1439.
(38) Drew, M. G. B.; Hudson, M. J.; Iveson, P. B.; Russell, M.
L.; Liljenzin, J. O.; Skalberg, M.; Spjuth, L.; Madic, C. Theoretical
and experimental studies of the protonated terpyridine cation. Ab
initio quantum mechanics calculations, and crystal structures of two
different ion pairs formed between protonated terpyridine cations and
nitratolanthanate(III) anions. J. Chem. Soc. Dalton Trans. 1998,
2973–2980.
(39) Dobrawa, R.; Ballester, P.; Saha-Möller, C. R.; Wü rthner,
F. Thermodynamics of 2,2':6',2''-terpyridine-metal ion complexation.
In metal-containing and metallosupramolecular polymers and
materials; ACS Symposium Series; American Chemical Society: 2006;
Vol. 928, pp 43−62.
supramolecular assembly of micelle-like gold nanoparticles in ps-b-
p2vp diblock copolymers via hydrogen bonding. J. Am. Chem. Soc.
2
011, 133, 16986–16996.
13) Kim, Y.; Kook, K.; Hwang, S. K.; Park, C.; Cho, J.
(
Polymer/perovskite-type nanoparticle multilayers with multielectric
properties prepared from ligand addition-induced layer-by-layer
assembly. ACS Nano 2014, 8, 2419–2430.
(14) Barrow, M.; Taylor, A.; Murray, P.; Rosseinsky, M. J.;
Adams, D. J. Design considerations for the synthesis of polymer
coated iron oxide nanoparticles for stem cell labelling and tracking
using MRI. Chem. Soc. Rev. 2015, 44, 6733–6748.
(15) Kim, C. R.; Uemura, T.; Kitagawa, S. Inorganic
nanoparticles in porous coordination polymers. Chem. Soc. Rev. 2016,
4
5, 3828–3845.
16) Zhang, H.; Liu, Y.; Yao, D.; Yang, B. Hybridization of
(
inorganic nanoparticles and polymers to create regular and reversible
self-assembly architectures. Chem. Soc. Rev. 2012, 41, 6066–6088.
(17) Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.;
Wang, S. Conjugated polymer nanoparticles: preparation, properties,
functionalization and biological applications. Chem. Soc. Rev. 2013,
4
2, 6620–6633.
(18) Grzelczak, M.; Liz-Marzan, L. M.; Klajn, R. Stimuli-
responsive self-assembly of nanoparticles. Chem. Soc. Rev. 2019, 48,
342–1361.
19) Udayabhaskararao, T.; Altantzis, T.; Houben, L.;
1
(
Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzan, L.
M.; Vukovic, L.; Kral, P.; Bals, S.; Klajn, R. Tunable porous
nanoallotropes prepared by post-assembly etching of binary
nanoparticle superlattices. Science 2017, 358, 514–518.
(20) Zhang, J.; Santos, P. J.; Gabrys, P. A.; Lee, S.; Liu, C.;
Macfarlane, R. J. Self-assembling nanocomposite tectons. J. Am.
Chem. Soc. 2016, 138, 16228–16231.
(21) Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A.
Supramolecular chemistry at interfaces: host-guest interactions for
fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47,
(40) Offenhartz, P.; George, P.; Haight, G. P. Ionization
constants for ligand 2,2',2''-tripyridine. J. Phys. Chem. 1963, 67, 116–
118.
2
106–2115.
(41) Zhao, Y.; Newton, J. N.; Liu, J.; Wei, A. Dithiocarbamate-
ACS Paragon Plus Environment