10.1002/anie.202006218
Angewandte Chemie International Edition
RESEARCH ARTICLE
[12] G. J. Warner, M. J. Berry, M. E. Moustafa, B. A. Carlson, D. L. Hatfield,
J. R. Faust, J Biol Chem 2000, 275, 28110-28119.
performed at the Core Unit Systems Medicine at the University of
Würzburg.
[13] a) M. Zhou, T. Long, Z. P. Fang, X. L. Zhou, R. J. Liu, E. D. Wang, RNA
Biol 2015, 12, 900-911; b) A. G. Arimbasseri, J. Iben, F. Y. Wei, K. Rijal,
K. Tomizawa, M. Hafner, R. J. Maraia, RNA 2016, 22, 1400-1410; c) L.
K. Kim, T. Matsufuji, S. Matsufuji, B. A. Carlson, S. S. Kim, D. L. Hatfield,
B. J. Lee, RNA 2000, 6, 1306-1315.
Keywords: deoxyribozyme • RNA modification •
epitranscriptomics • in vitro selection • site-specific RNA
cleavage
[14] V. I. Tararov, S. V. Kolyachkina, C. S. Alexeev, S. N. Mikhailov,
Synthesis 2011, 2011, 2483-2489.
[1]
a) P. Boccaletto, M. A. Machnicka, E. Purta, P. Piatkowski, B. Baginski,
T. K. Wirecki, V. de Crecy-Lagard, R. Ross, P. A. Limbach, A. Kotter, M.
Helm, J. M. Bujnicki, Nucleic Acids Res 2018, 46, D303-D307; b) P. J.
McCown, A. Ruszkowska, C. N. Kunkler, K. Breger, J. P. Hulewicz, M.
C. Wang, N. A. Springer, J. A. Brown, Wiley Interdiscip Rev RNA 2020,
e1595.
[15] Analysis of the sequencing data was performed using fastaptamer perl
scripts: K. K. Alam, J. L. Chang, D. H. Burke, Mol Ther Nucleic Acids
2015, 4, e230
[16] Only variants with more than 50 reads were counted.
[17] O. Wagih, Bioinformatics 2017, 33, 3645-3647.
[18] a) H. Liu, X. Yu, Y. Chen, J. Zhang, B. Wu, L. Zheng, P.
Haruehanroengra, R. Wang, S. Li, J. Lin, J. Li, J. Sheng, Z. Huang, J.
Ma, J. Gan, Nat Commun 2017, 8, 2006; b) S. W. Santoro, G. F. Joyce,
Proc Natl Acad Sci 1997, 94, 4262-4266.
[2]
a) M. Helm, Y. Motorin, Nature Reviews Genetics 2017, 18, 275; b) B.
Linder, S. R. Jaffrey, Cold Spring Harb Perspect Biol 2019, 11; c) K.
Hartstock, A. Rentmeister, Chemistry 2019, 25, 3455-3464.
M. V. Sednev, V. Mykhailiuk, P. Choudhury, J. Halang, K. E. Sloan, M.
T. Bohnsack, C. Höbartner, Angew Chem Int Ed 2018, 57, 15117-15121.
a) R. R. Breaker, G. F. Joyce, Chem. Biol 1994, 1, 223-229; b) S. K.
Silverman, Nucleic Acids Res 2005, 33, 6151-6163; c) K. Schlosser, Y.
Li, ChemBioChem 2010, 11, 866-879.
[3]
[4]
[19] This sequence was identified from clone number 17 of the AB selection
(AB17), but because of its distinct properties and the sequence similarity
to VMC10, it was renamed to AC17.
[20] A. Ponce-Salvatierra, K. Wawrzyniak-Turek, U. Steuerwald, C.
Höbartner, V. Pena, Nature 2016, 529, 231-234.
[5]
[6]
[7]
[8]
M. Buchhaupt, C. Peifer, K.-D. Entian, Anal Biochem 2007, 361, 102-
108.
[21] H. P. Cheng, X. H. Yang, L. Lan, L. J. Xie, C. Chen, C. Liu, J. Chu, Z. Y.
Li, L. Liu, T. Q. Zhang, D. Q. Luo, L. Cheng, Angew Chem Int Ed 2020,
doi: 10.1002/anie.202003360.
M. Bujnowska, J. Zhang, Q. Dai, E. M. Heideman, J. Fei, J Biol Chem
2020. doi: 10.1074/jbc.RA120.013359
[22] AB08 and AC17 are not directly applicable for the examination of natural
tRNAs, because of their preferred i6A sequence context. Natural
isopentenyl transferase enzymes preferably prenylate the central
adenosine of a triple AAA motif,[24] while the DNA enzymes reported in
this study require a guanine next to i6A. The RNA substrate containing
the Gi6A motif was chosen to allow for direct comparison with m6A-
sensitive DNA enzymes. Analogous experiments with Ai6AA-containing
RNAs are expected to yield DNA enzymes in the future that can be used
on native tRNA sequences.
U. Schweizer, S. Bohleber, N. Fradejas-Villar, RNA Biol 2017, 14, 1197-
1208.
a) R. J. Maraia, J. R. Iben, RNA 2014, 20, 977-984; b) T. N. Lamichhane,
A. G. Arimbasseri, K. Rijal, J. R. Iben, F. Y. Wei, K. Tomizawa, R. J.
Maraia, RNA 2016, 22, 583-596; c) J. W. Yarham, T. N. Lamichhane, A.
Pyle, S. Mattijssen, E. Baruffini, F. Bruni, C. Donnini, A. Vassilev, L. He,
E. L. Blakely, PLoS genetics 2014, 10, e1004424.
[9]
T. Janas, T. Janas, M. Yarus, RNA 2012, 18, 2260-2268.
[10] a) V. Reiter, D. M. Matschkal, M. Wagner, D. Globisch, A. C. Kneuttinger,
M. Müller, T. Carell, Nucleic Acids Res 2012, 40, 6235-6240; b) M.
Fakruddin, F. Y. Wei, S. Emura, S. Matsuda, T. Yasukawa, D. Kang, K.
Tomizawa, Nucleic Acids Res 2017, 45, 11954-11961.
[23] a) E. Kierzek, R. Kierzek, Nucleic Acids Res 2003, 31, 4472-4480; b) A.
P. Denmon, J. Wang, E. P. Nikonowicz, J Mol Biol 2011, 412, 285-303.
[24] T. Soderberg, C. D. Poulter, Biochemistry 2000, 39, 6546-6553.
[11] C. Mathevon, F. Pierrel, J. L. Oddou, R. Garcia-Serres, G. Blondin, J. M.
Latour, S. Menage, S. Gambarelli, M. Fontecave, M. Atta, Proc Natl Acad
Sci 2007, 104, 13295-13300.
This article is protected by copyright. All rights reserved.