9
0
H.-y. Jiang et al. / Applied Catalysis A: General 421–422 (2012) 86–90
Table 7
Effect of hydrogen pressure on selective hydrogenation of trans-4-phenyl-3-butene-2-one.
P(H2)/MPa
Conversion (%)
Selectivity (%)
ee (%)a
A
B
C
2
4
6
8
72.0
90.0
99.6
99.9
1.6
0.6
0.2
0.5
0.2
0.4
0.5
1.3
98.2
99.0
99.3
98.2
43.0
44.7
46.0
45.3
The reaction conditions are the same as in Table 1 (3%Ir/SiO2/2tpp) except the hydrogen pressure.
a
Configuration: S.
explanation for this phenomenon is that the sterically hindered
modifier 1 prefers the base with smaller metal cation to produce
higher chemoselectivity and enantioselectivity on metal iridium
surface.
[2] Ullmann’s Encyclopedia of Technical Chemistry, 6th ed., Wiley–VCH, 2000
Electronic release).
(
[
3] T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K. Murata, E.
Katayama, T. Yokozawa, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 120 (1998)
13529–13530.
[
4] T. Ohkuma, H. Takeno, Y. Honda, R. Noyori, Adv. Synth. Catal. 343 (2001)
3
69–375.
3.5. Effect of hydrogen pressure
[
5] H.U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth.
Catal. 345 (2003) 103–151.
The effect of hydrogen pressure on the selective hydrogenation
[6] P. Mäki-Arvela, J. Hájek, T. Salmi, D.Y. Murzin, Appl. Catal. A 292 (2005) 1–49.
[
7] C. Milone, R. Ingoglia, M.L. Tropeano, G. Neri, F. Frusteri, S. Galvagno, Chem.
Commun. (2003) 868–869.
of trans-4-phenyl-3-butene-2-one is shown in Table 7. The increase
in hydrogen pressure was beneficial to the catalytic activity over
the whole pressure range under investigation. Both chemoselec-
tivity and enantioselectivity increased initially with the increase
of the hydrogen pressure and reached a maximum at 6 MPa.
Further increase in hydrogen pressure led to chemoselectivity
and enantioselectivity decrease. This observation is in agreement
with some previous heterogeneous enantioselective hydrogena-
tion report [36]. The chemoselectivity decrease might be explained
that too much H2 absorbed on the catalyst surface would lead
to desorption of modifier 1 on the metal surface and caused the
hydrogenation progressed in the conventional route. The fact that
enantioselectivity value reduced upon further increase of hydrogen
pressure, suggested that the competitive adsorption of hydrogen
on the catalyst surface would influence the access of the substrate.
[8] C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri, S. Galvagno, J. Catal. 222
(2004) 348–356.
[
9] P.G.N. Mertens, H. Poelman, X. Ye, I.F.J. Vankelecom, P.A. Jacobs, D.E. De Vos,
Catal. Today 122 (2007) 352–360.
[
[
[
10] P.G.N. Mertens, J. Wahlen, X. Ye, H. Poelman, D.E. De Vos, Catal. Lett. 118 (2007)
15–21.
11] P.G.N. Mertens, P. Vandezande, X. Ye, H. Poelman, I.F.J. Vankelecom, D.E. De
Vos, Appl. Catal. A 355 (2009) 176–183.
12] P. Claus, Appl. Catal. A 291 (2005) 222–229.
[13] M. De Bruyn, S. Coman, R. Bota, V.I. Parvulescu, D.E. De Vos, P.A. Jacobs, Angew.
Chem. Int. Ed. 42 (2003) 5333–5336.
[
14] D.R. Liu, W. Xiong, G.Y. Fan, H. Chen, R.X. Li, X.J. Li, Appl. Catal. A 339 (2008)
3–98.
9
[15] N.E. Musselwhite, S.B. Wagner, K.A. Manbeck, L.M. Carl, K.M. Gross, A.L. Marsh,
Appl. Catal. A 402 (2011) 104–109.
16] M. von Arx, T. Mallat, A. Baiker, J. Mol. Catal. A 148 (1999) 275–283.
17] R. Kosydar, A. Drelinkiewicz, E. Lalik, J. Gurgul, Appl. Catal. A 402 (2011)
121–131.
[
[
[18] M. Pisarek, M. Łukaszewski, P. Winiarek, P. K
Appl. Catal. A 358 (2009) 240–248.
e˛ dzierzawski, M. Janik-Czachor,
Additionally, the competition among H , modifier and substrate
2
might be more severe under the lower concentration of catalyst.
[
[
19] M. Vilar, J.L. Oliveira, M. Navarro, Appl. Catal. A 372 (2010) 1–7.
20] H.Y. Jiang, C.F. Yang, C. Li, H.Y. Fu, H. Chen, R.X. Li, X.J. Li, Angew. Chem. Int. Ed.
47 (2008) 9240–9244.
21] H.Y. Jiang, H. Chen, R.X. Li, Catal. Commun. 11 (2010) 584–587.
22] C.F. Yang, H.Y. Jiang, J. Feng, H.Y. Fu, R.X. Li, H. Chen, X.J. Li, J. Mol. Catal. A 300
(2009) 98–102.
4
. Conclusion
[
[
We demonstrated the heterogeneous enantioselective hydro-
genation of trans-4-phenyl-3-butene-2-one to corresponding
allylic alcohol with high chemoselectivity and moderate enantios-
electivity catalyzed by cinchona- and phosphine-modified iridium
catalysts. Additional work is currently in progress in this and related
areas.
[23] W. He, B.L. Zhang, R. Jiang, P. Liu, X.L. Sun, S.Y. Zhang, Tetrahedron Lett. 47
2006) 5367–5370.
(
[
[
24] D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852–7872.
25] D.V. Leff, L. Brandt, J.R. Heath, Langmuir 12 (1996) 4723–4730.
[26] M. Tamura, H. Fujihara, J. Am. Chem. Soc. 125 (2003) 15742–15743.
[
27] S. Jansat, M. Gomez, K. Philippot, G. Muller, E. Guiu, C. Claver, S. Castillon, B.
Chaudret, J. Am. Chem. Soc. 126 (2004) 1592–1593.
[
28] Y. Zhu, H. Qian, B.A. Drake, R. Jin, Angew. Chem. Int. Ed. 49 (2010) 1295–1298.
Acknowledgements
[29] C. Maillet, P. Janvier, M. Pipelier, T. Praveen, Y. Andres, B. Bujoli, Chem. Mater.
3 (2001) 2879–2884.
1
[
[
30] M. Studer, H.U. Blaser, C. Exner, Adv. Synth. Catal. 345 (2003) 45–65.
31] T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107 (2007) 4863–4890.
This work was financially supported by Natural Science Founda-
tion Project of CQ (No. CSTC, 2011BA5025), Ministry of Education
of Chongqing (No. KJ100701), Chongqing Technology and Business
University (No. 2010-56-14) and Chongqing Innovative Research
Team Development Program in University (No. KJTD201020).
[32] W. Xiong, H.X. Ma, Y.Y. Hong, H. Chen, X.J. Li, Tetrahedron: Asymmetry 16
2005) 1449–1452.
(
[
[
33] A. Perosa, P. Tundo, M. Selva, J. Mol. Catal. A 180 (2002) 169–175.
34] H.Y. Chen, J.M. Hao, H.J. Wang, C.Y. Xi, X.C. Meng, S.X. Cai, F.Y. Zhao, J. Mol. Catal.
A 278 (2007) 6–11.
[
[
35] L. Ye, H. Lin, H. Zhou, Y. Yuan, J. Phys. Chem. C 114 (2010) 19752–19760.
36] Y.L. Huang, Y.Z. Li, J.Y. Hu, P.M. Cheng, H. Chen, R.X. Li, X.J. Li, C.W. Yip, A.S.C.
Chan, J. Mol. Catal. A 189 (2002) 219–224.
References
[1] K. Bauer, D. Garbe, H. Surburg, Common Fragrance and Flavor Materials,
Wiley–VCH, Weinheim, 1997.